

Members:

Hevra Petekkaya (7055462) Jaykumar Bhagiya (7055903) Nischal Maharjan (7058343)

OUTLINE

Image Literature Vision Swin Introduction **Translation** Review Transformer Transformer **Pipeline**

Motivation

• Need of huge amount of data

 Distribution shift occurs when trained on simulated data

Problem Statement

 Given simulated images, generate realistic looking images

Simulated image

Real image

Dataset

 We have used Kitti and Virtual Kitti Dataset to generate image pairs

• 2126 image pairs

<u>Source</u>

<u>Source</u>

<u>Source</u>

Literature Review

We are trying to achieve Image
Translation

<u>Pix2pix: Image-to-Image Translation with Source Conditional Adversarial Networks</u>

Literature Review

- Autoencoder with euclidean loss
- Usually Blurry image
- Hence use adversarial loss

Image Translation Pipeline

• Input: Image pairs

• Output: Generated image

 Architecture: Generator and Discriminator

Unet based approach

Unet based Generator

Synthetic Image

Realistic Looking Image

Discriminator: Patch Gan

- Instead of single output for whole image we have outputs for each patch
- Improves the quality of generated images
- Reduces computational burden

Results

Unet Based	RMSE↓	Perceptual↓	Inception ↑	FID Value↓
Unet GAN	0.180	0.0482	3.5±0.24	259.86
Unet GAN Aug	0.196	0.0502	2.73±0.09	307.30

VIT based Generator

- VIT model as Encoder
- Generates image latent representation

VIT based

Generator

VIT based Generator

 Uses Attention Mechanism

Source

Decoder in Generator

 We use decoder similar to that of Unet architecture but without skip connection

Results

Model (Patch size 16)	RMSE	Perceptual	Inception	FID Value
ViTGAN-Complex	0.151	0.0388	3.01±0.25	210.33
ViTGAN-Color	0.169	0.0321	2.66±0.18	267.12
ViTGAN-Aug	0.165	0.0365	3.10±0.29	280.90

Model (Patch size)	RMSE	Perceptual	Inception	FID Value
ViTGAN-8	0.144	0.0316	3.19±0.19	191.85
ViTGAN-16	0.154	0.0515	2.80±0.12	252.30
ViTGAN-32	0.162	0.0412	2.99±0.39	283.78

=

Swin Transformer based Generator

 Use of Swin transformer for generator

Swin Transformer based Generator

 Variant of VIT with hierarchical structure

<u>Source</u>

Swin Transformer based Generator

Uses concept of shifted window

Swin Transformer based Generator

Source

Uses Cyclic shift instead of padding for efficient computation

Results

Swin (Window)	RMSE	Perceptual	Inception	FID Value
Swin (6, 6)	0.224	0.0600	1.79±0.10	435.18
Swin (12, 6)	0.204	0.0419	3.24±0.09	429.64
Swin-Color (12, 6)	0.236	0.0484	2.10±0.12	416.57

=

Comparison

Model	RMSE	Perceptual	Inception	FID Value
ViTGAN-8	0.144	0.0316	3.19±0.19	191.85
Swin (12, 6)	0.204	0.0419	3.24±0.09	429.64
Unet GAN	0.180	0.0482	3.5±0.24	259.86

Thank you.

