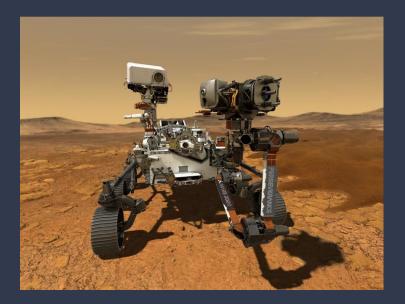
Real Time Visual Localization And Mapping

Nischal Maharjan Rashik Shrestha Sajil Awale Shrey Niraula

073 BEX 421 073 BEX 432 073 BEX 436 073 BEX 443



Perseverance Rover by NASA

Landed on Mars on Feb. 18, 2021

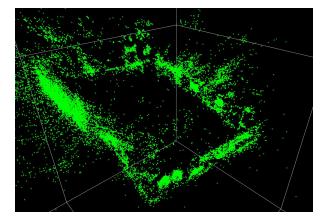
But how it will navigate on totally unknown environment?

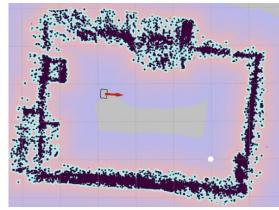
Image Source: https://www.pcmag.com/news/nasas-mars-perseverance-rover-landing-how-to-watch-and-whats-on-board

What?

Is the project about

What?





Мар

Localize

Using Visual Sensors Only

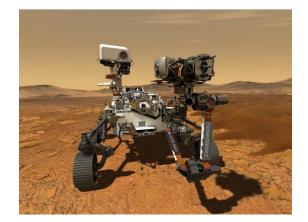
Deal with moving people

The project has been done

Why?

Self Driving Cars

Image Source https://en.wikipedia.org/wiki/Self-driving_car



Unmanned Vehicles

Image Source: https://www.pcmag.com/news/nasas-mars-perseverance-rover-landing-how-to -watch-and-whats-on-board

Autonomous Navigation

Image Source: https://www.digitaltrends.com/cool-tech/robot-waiter-ginger/

How?

The project was done

How?

Popular Visual Sensors

LIDAR

Depth Camera

Stereo Camera

Image Source:

https://www.forbes.com/sites/alanohnsman/2019/04/23/teslas-elonmusk-trashes-lidar-for-self-driving-cars-but-waymo-is-rolling-out-a-newone/?sh=2259e8c85a9d Image Source: https://jahya.net/blog/how-depth-sensor-works-in-5-minutes/ Image Source: https://www.amazon.ca/MYNT-Stereo-Camera-De pth-Sensor/dp/B07NJ4GL6X

8

"Lidar is a fool's errand, anyone relying on lidar is doomed. Doomed! "

- Elon Musk

CEO, and product architect of Tesla

How?

Monocular cameras are the cheap option

But, it needs more computational power to achieve same accuracy as expensive sensors

How?

Our Approach

+

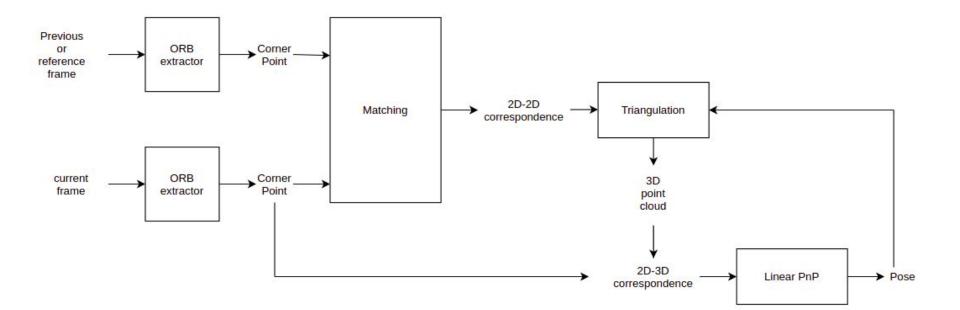
Limited Computational Power

(CPU only Computation) (No GPU acceleration)

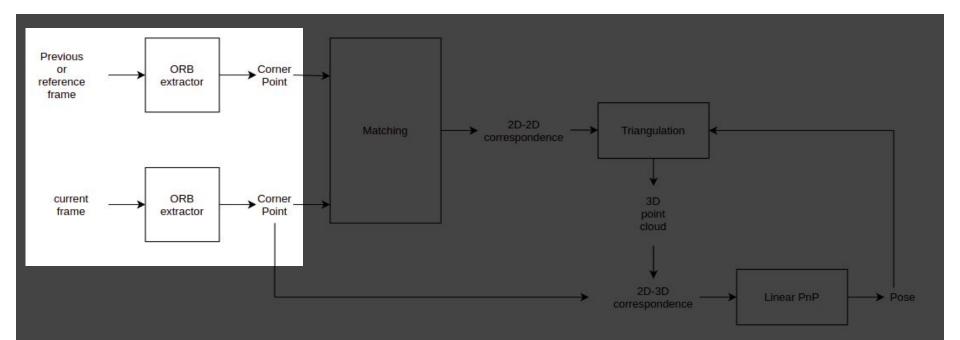
Single Monocular Camera

Using Visual SLAM

Structure from Motion Paradigm

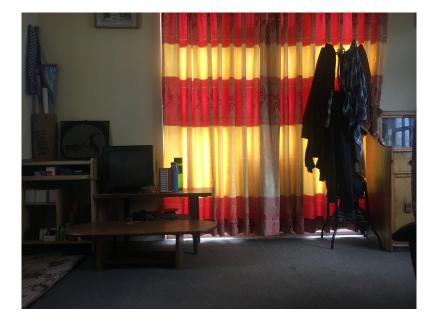


ORB Extraction

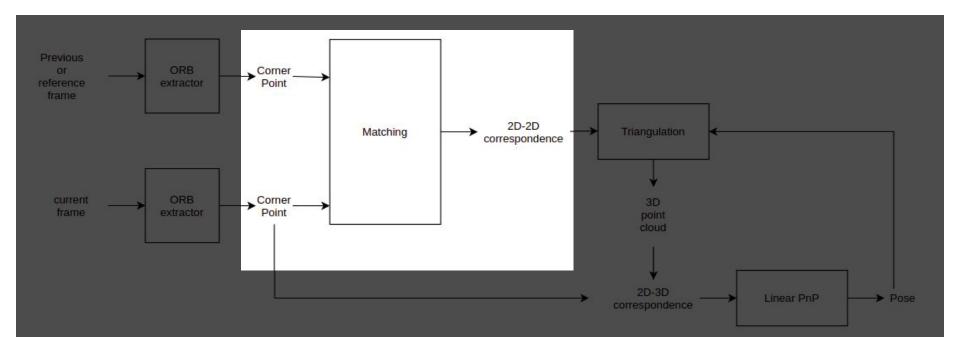


Original Image

Corner points detected

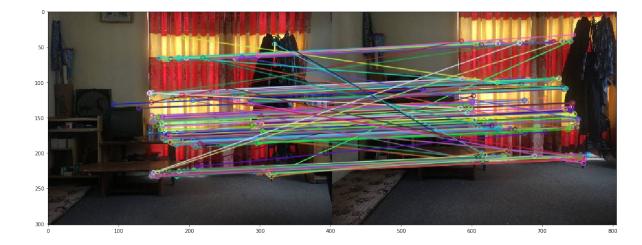


Feature Matching

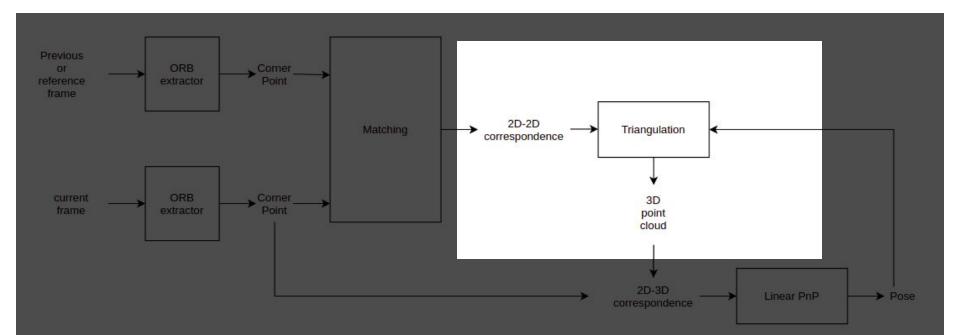


Keypoint Matches with number of outliers

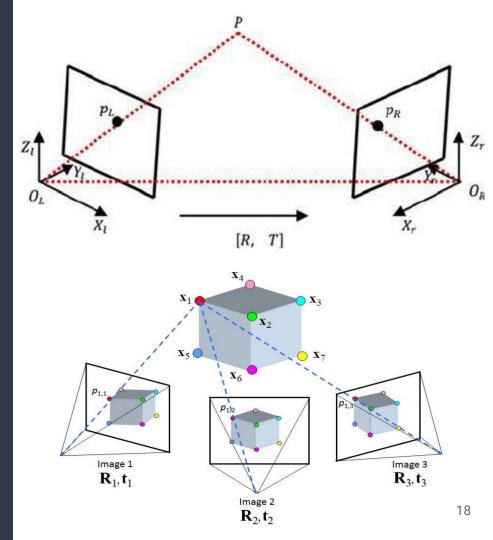
Keypoint matches after selecting inliers satisfying epipolar constraint using RANSAC



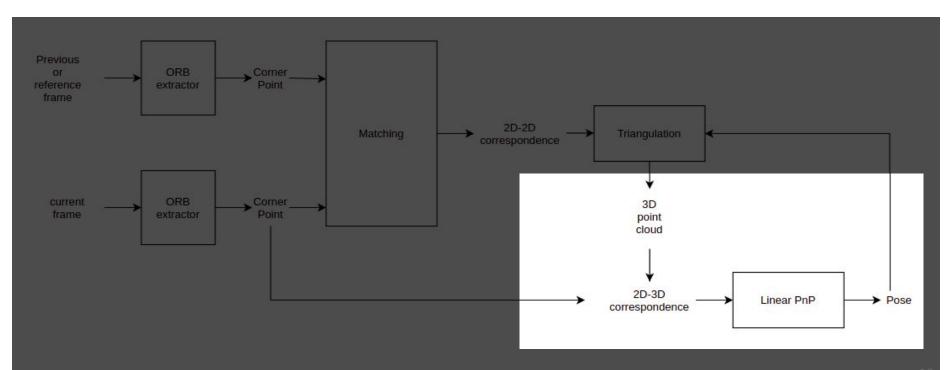
Triangulation



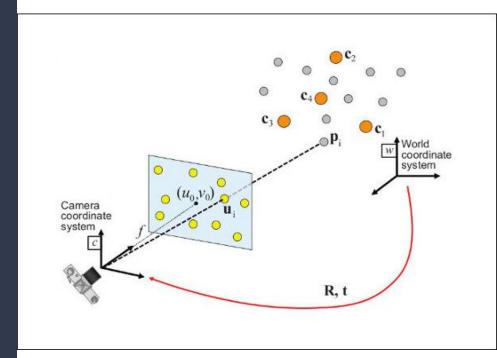
Given 2D-2D correspondence and relative pose between two images respective 3D point is estimated



Linear PnP(Pose Estimation)



Given 2D-3D correspondence between image and 3d point cloud relative pose of image wrt world coordinate system can be estimated



Mapping :

Triangulation Generates 3D point cloud The generate local point cloud are stitched together to generate the map.

Localization:

Linear Pnp estimates the pose of camera in the 3D world coordinate system.

The pose generated by Linear PnP is used as input for the triangulation and the 3D point cloud generated is used to determine 3D-2D correspondence for pose estimation using Linear PnP. These two process of Map generation and pose estimation occurs in hand in hand simultaneously. Thus termed as SLAM(Simultaneous Localisation and Mapping)

Graph Optimization

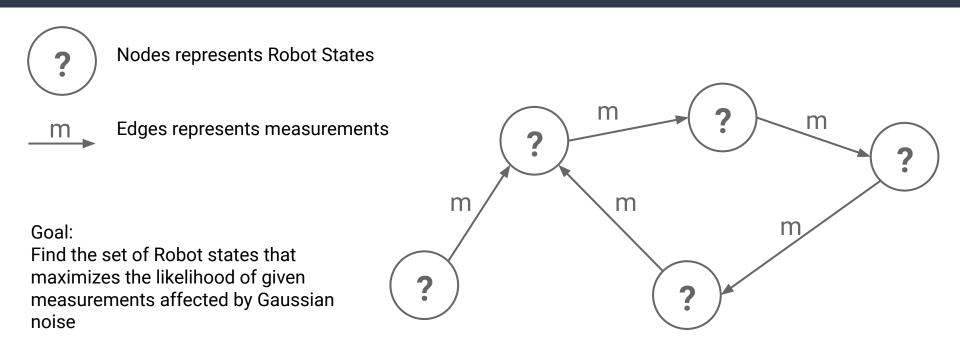
Graph Optimization

Measurements collected

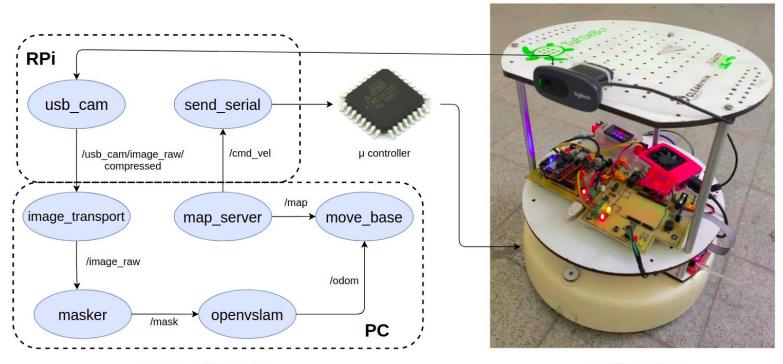
- 1. Relative transformation between adjacent robot poses
- 2. 3d coordinates of points in point cloud

But measurements are affected by Noise

Graph Optimization



Communication Architecture



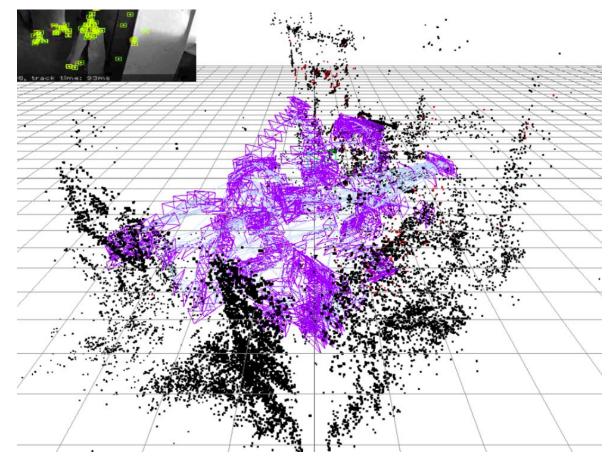
ROS Architecture

Mobile Robot

Mapping

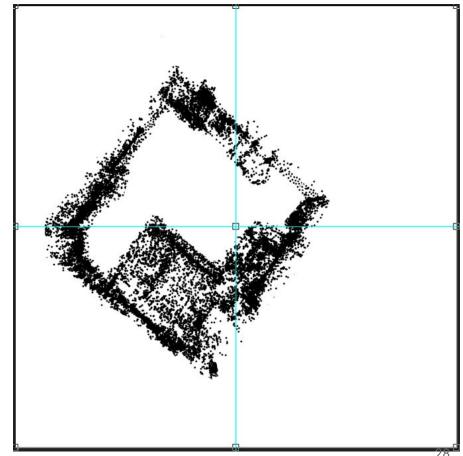
Storing the information about surrounding in memory

3D map of a room



Occupancy grid map

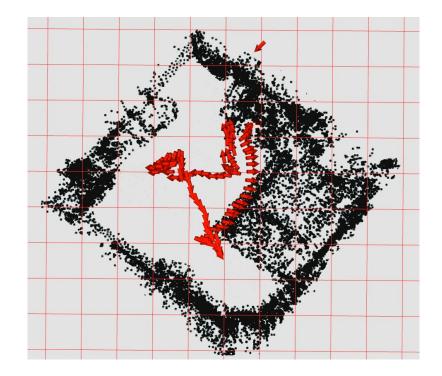
- 2D projection of 3D map lacksquare
- Unwanted points are manually • filtered



Localization

Finding your pose with respect to the prebuilt map

Visualizing live odometry

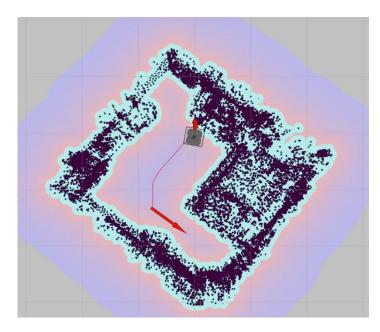


Navigation

Planning path from current position to destination

Path planning

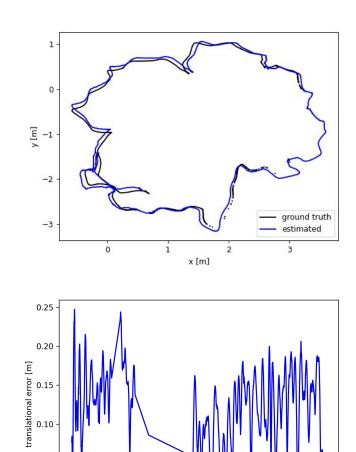
- Used to find best route from current location to destination
- Uses A* algorithm



Static Environment Datasets

fr2_desk dataset

RMS error: 9.7710 cm Relative Translational error: 12.9474 cm Relative Rotational error: 14.37 degree



0.05

0.00

0

20

40

time [s]

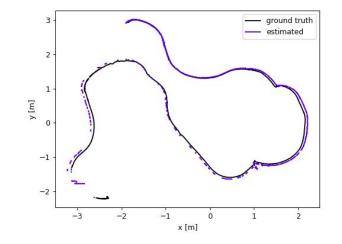
60

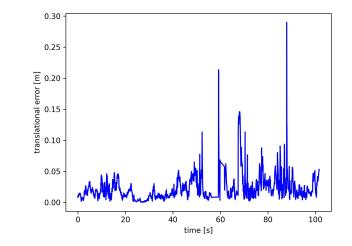
80

100

<u>fr2_pioneer_slam</u> <u>2 dataset</u>

RMS error: 10.196 cm Relative Translational error: 2.8162 cm Relative Rotational error: 1.059033 degree





Localization issues

Problems due to dynamic objects in the environment

Dynamic Obstacle Avoidance

Dynamic Obstacle Avoidance

- Dynamic Objects: Human, Vehicles, Animals
- Causes problem while mapping and tracking
- Map corrupted due to their inclusions
- Key Points from them to be removed

How to tackle dynamic object then...?

Segmentation is chosen as method due to:

- Easy availability of pretrained models
- Availability of dataset with labels

Among segmentation methods, we prefer to go for **Semantic Segmentation** method because:

- Faster segmentation method
- Has High speed models for even CPU (ICNet)

How Does masking Help??

- Reduction of tracking error

- Removal of Keypoints

Removal of Keypoints from Dynamic Object

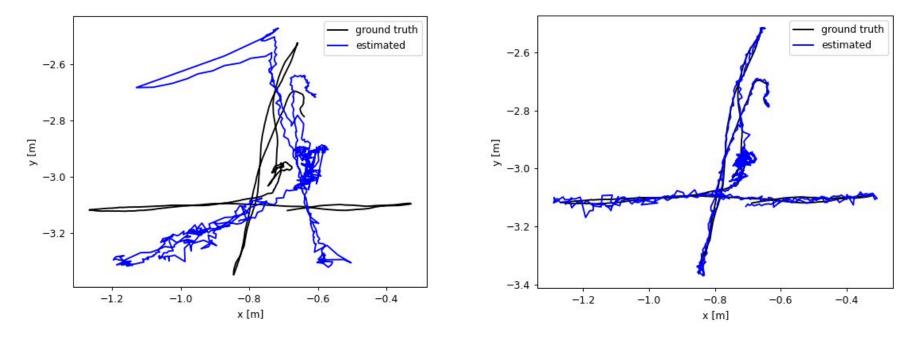
Figure 4.10: Before masking

Luden Luden MARTING I LFE: 200, LMB: 1206, KID: 292, Yrack: 4tmre: 27ms

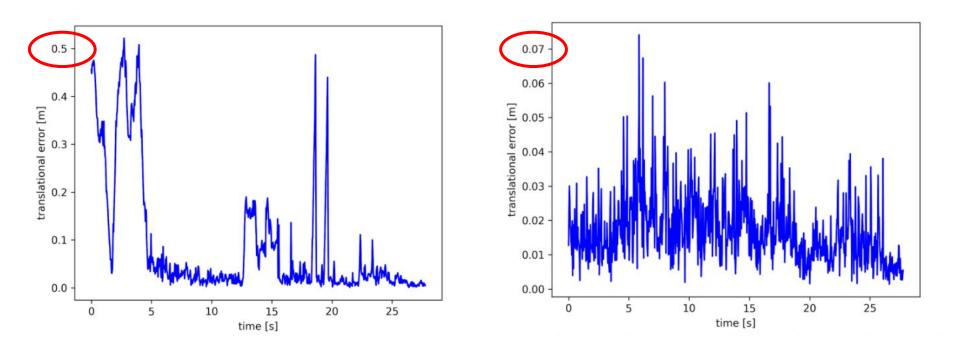
Figure 4.11: Mask

Figure 4.12: after masking

TUM walking_xyz (dynamic dataset) Reduction of tracking error



Relative translational error



Error Metrics

Without Mask

RMS error: 23.7222 cm Relative Translational error: 16.69966 cm Relative Rotational error: 3.093489 degree

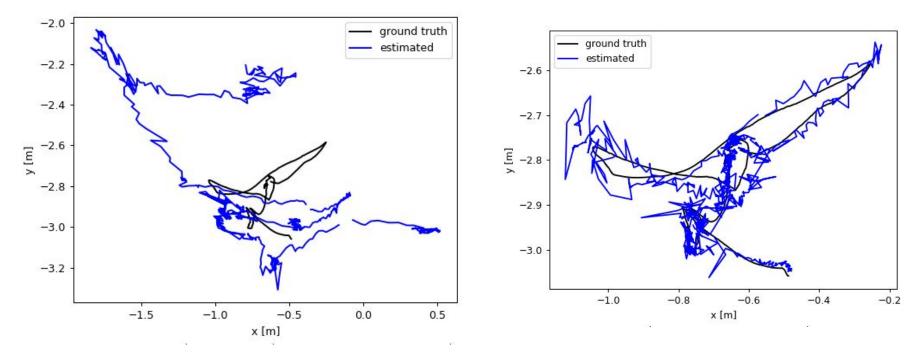
Best Case RMS error: 18.8568 cm

With Mask

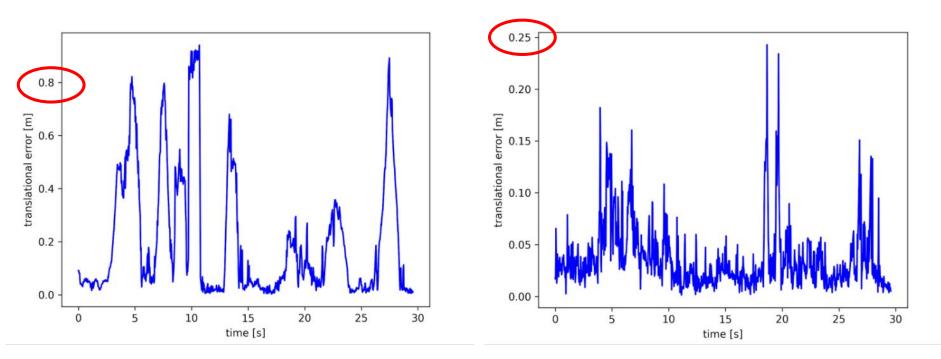
RMS error: 1.79716cm Relative Translational error: 2.2598cm Relative Rotational error: 0.6158846 degree

Best Case RMS error: 1.5409 cm

walking_rpy



Relative translational error



Error Metrics

Without Mask

RMS error: 51.4982cm Relative Translational error: 30.59184cm Relative Rotational error: 6.0403042 degree

Best Case RMS error: 47.0009 cm

With Mask

RMS error: 3.9883 cm Relative Translational error: 5.11032 cm Relative Rotational error: 1.1446668degree

Best Case RMS error: 3.7272 cm

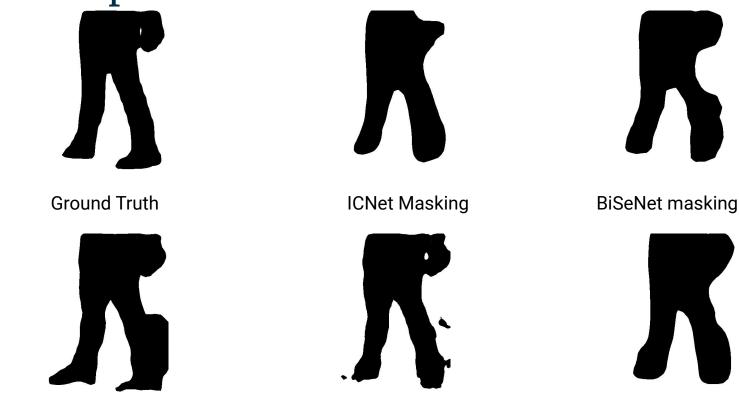
Let's compare Masks !!

Dataset & Methods	Validated on Locus Office Dataset		APSIS	
	mIOU(%)	FPS	mIOU (%)	FPS
ICNet	80.08	26.51525	83.69	20.90771
BiSeNetv1	84.09	13.71467	84.03	12.52348
DeepLabV3plus	88.77	7.28928	84.84	6.67264
UNetPlus	82.59	5.58920	84.34	7.57311
ICnet fine- tuned(ours)	83.27	24.03161	77.63	26.21884

Table 5.3: Inference Speed mIOU Comparison of Segmentation Models

Note: All inference were carried out in Intel(R) Core(TM) i5-8250U CPU @ 1.60GHz (CPU only)

Model Comparison on MultiEnv dataset



DeepLabV3Plus Masking

UNet Masking

Our fined tuned Masking

Overlay Comparison of Masking Schemes

ICNet overlay

Original Image

BiSeNet overlay

DeepLabV3Plus overlay

UNet overlay

Our Fined tuned overlay

Choose ICNet (speed over quality)

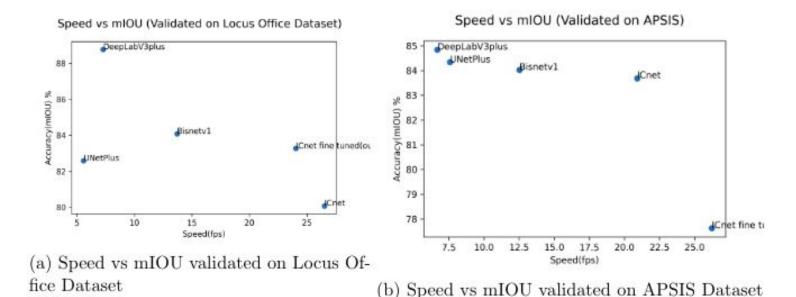


Figure 5.16: Speed vs Accuracy Comparison of Models

Mask Generation Using ICNet

- ICNet for mask generation
 - Due to fastest inference speed in CPU
- Mask generated using pre-trained ICNet Model
- 3 branches model architecture
- Internally 320x320 resizing of input during inference

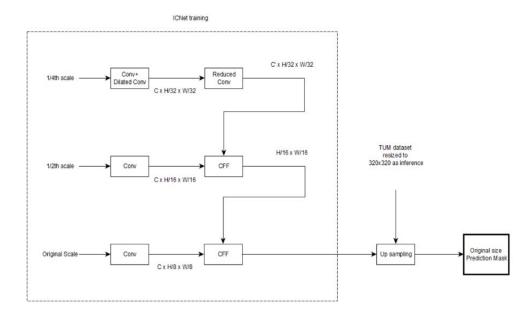


Figure 4.13: ICNet Inference

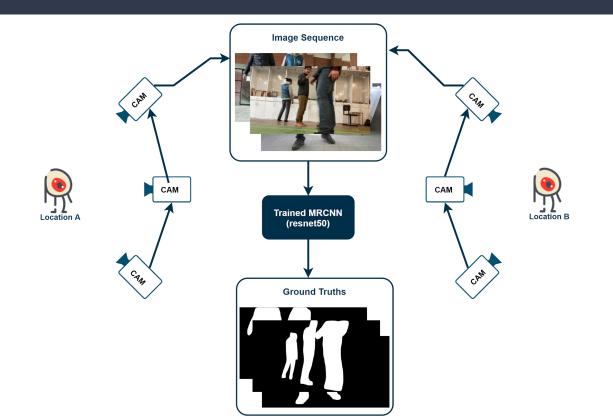
Further improvement of Mask

Common public human dataset

Robots perspective view

Focus on face and upper body

Custom Dataset Generation



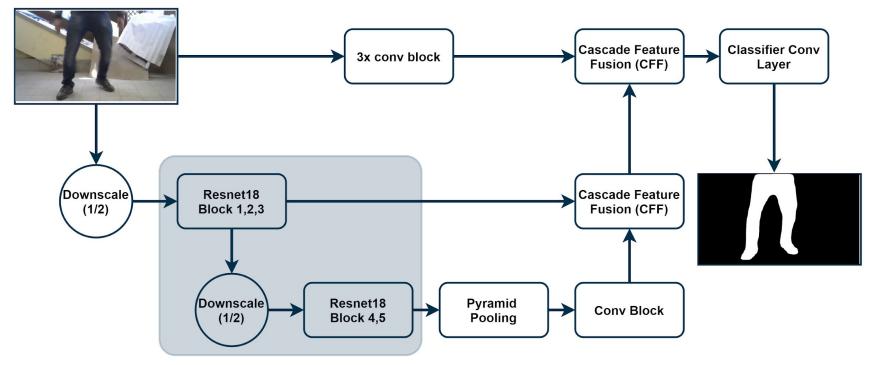
Multi Environment Walking Dataset (1435)

Taken as Training Set

Locus Office walking dataset (1350)

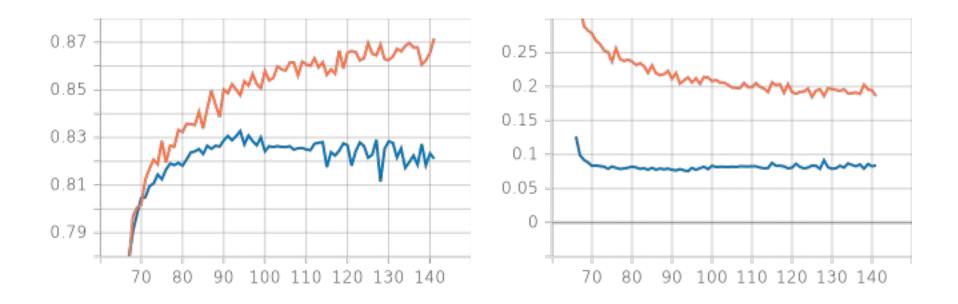
Taken as Validation Set

Fine Tuning ICnet



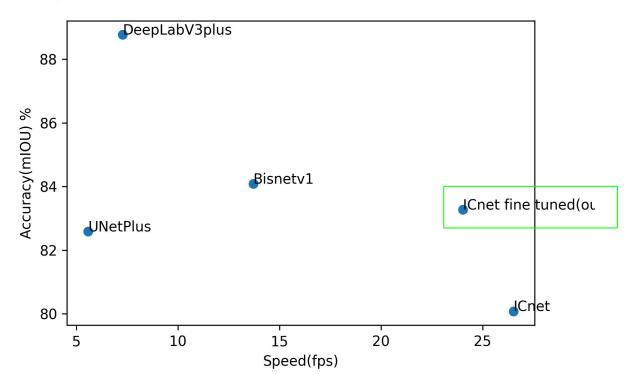
Frozen Feature extracting Backbone

Fine Tuning ICnet



Fine Tuning ICnet

Speed vs mIOU (Validated on Locus Office Dataset)



Limitation and further improvement

- Focused in **indoor** environment
- Considers human as main dynamic objects
- Could perform **motion segmentation** instead of semantic segmentation
- Make robot more robust to changes in lighting
- Improve performance in **texture** less environments

Thank you !!