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Image Source:
https://www.pcmag.com/news/nasas-mars-perseverance-rover-landing-how-to-watch-and-whats-on-board

Perseverance Rover by NASA

Landed on Mars on Feb. 18, 2021

But how it will navigate on totally 
unknown environment ?
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What?
Is the project about
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What?

Map Localize Deal with 
moving peopleUsing Visual Sensors Only 4



Why?
The project has been done
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Why?

Image Source
 https://en.wikipedia.org/wiki/Self-driving_car

Self Driving Cars

Image Source:
https://www.pcmag.com/news/nasas-mars-perseverance-rover-landing-how-to
-watch-and-whats-on-board

Unmanned Vehicles

Image Source:
https://www.digitaltrends.com/cool-tech/robot-waiter-ginger/

Autonomous Navigation
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How?
The project was done
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How?

LIDAR Depth Camera Stereo Camera

Image Source: 
https://www.amazon.ca/MYNT-Stereo-Camera-De
pth-Sensor/dp/B07NJ4GL6X

Image Source: 
https://jahya.net/blog/how-depth-sensor-works-in-5-minutes/

Image Source: 
https://www.forbes.com/sites/alanohnsman/2019/04/23/teslas-elon-
musk-trashes-lidar-for-self-driving-cars-but-waymo-is-rolling-out-a-new-
one/?sh=2259e8c85a9d

Popular Visual Sensors

TOO

EXPENSIV
E
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Why?

“Lidar is a fool’s errand, anyone relying on lidar is 
doomed. Doomed! “

-  Elon Musk
CEO, and product architect of Tesla
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How?

Monocular cameras are the cheap option

But, it needs more computational power 
to achieve same accuracy as expensive 
sensors
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How?
Our Approach

Single Monocular Camera

Limited Computational Power

(CPU only Computation)
(No GPU acceleration)

Using Visual SLAM 11



Structure from Motion Paradigm
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ORB Extraction
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    Original Image         Corner points detected 
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Feature Matching
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Keypoint Matches 
with number of 
outliers 

Keypoint matches 
after selecting inliers 
satisfying epipolar 
constraint using 
RANSAC 
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Triangulation
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Given 2D-2D 
correspondence 
and relative pose 
between two 
images respective 
3D point is 
estimated
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Linear PnP(Pose Estimation)
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Given 2D-3D 
correspondence 
between image and 3d 
point cloud relative 
pose of image wrt 
world coordinate 
system can be 
estimated
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Mapping :

Triangulation Generates 3D point 
cloud The generate local point cloud 
are stitched together to generate the 
map. 

Localization: 

Linear Pnp estimates the pose of 
camera in the 3D world coordinate 
system.

The pose generated by Linear PnP is used as input for the triangulation and the 3D point 
cloud generated is used to determine 3D-2D correspondence for pose estimation using 
Linear PnP.  These two process of Map generation and pose estimation occurs in hand in 
hand simultaneously. Thus termed as SLAM(Simultaneous Localisation and Mapping)
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Graph 
Optimization
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Graph Optimization

Measurements collected

1. Relative transformation between adjacent robot poses
2. 3d coordinates of points in point cloud

But measurements are affected by Noise
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Graph Optimization

? ?

?
?
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? Nodes represents Robot States

Edges represents measurementsm

Goal:
Find the set of Robot states that 
maximizes the likelihood of given 
measurements affected by Gaussian 
noise
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Communication Architecture
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Mapping
Storing the information about surrounding in memory
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3D map of a 
room
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Occupancy grid 
map

● 2D projection of 3D map
● Unwanted points are manually 

filtered
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Localization
Finding your pose with respect to the prebuilt map
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Visualizing live odometry
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Navigation
Planning path from current position to destination
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Path planning

● Used to find best route from current 
location to destination

● Uses A* algorithm 

32



Static Environment 
Datasets
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fr2_desk dataset

RMS error: 9.7710 cm
Relative Translational error: 12.9474 cm 
Relative Rotational error: 14.37 degree
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fr2_pioneer_slam
2 dataset

RMS error: 10.196 cm
Relative Translational error: 2.8162 cm 
Relative Rotational error: 1.059033 degree
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Localization issues

Problems due to dynamic objects in the environment
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Dynamic Obstacle 
Avoidance
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Dynamic Obstacle Avoidance

● Dynamic Objects: Human, Vehicles, Animals 
● Causes problem while mapping and tracking

● Map corrupted due to their inclusions

● Key Points from them to be removed
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How to tackle dynamic object then… ?

Segmentation is chosen as method due to:

- Easy availability of pretrained models
- Availability of dataset with labels

Among segmentation methods, we prefer to go for 
Semantic Segmentation method because:

- Faster segmentation method 
- Has High speed models for even CPU (ICNet)
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How Does masking Help??

- Reduction of tracking error 

- Removal of Keypoints
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Removal of Keypoints from Dynamic Object
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TUM walking_xyz  (dynamic dataset)
Reduction of tracking error
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Relative translational error 
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Error Metrics

Without Mask

RMS error: 23.7222 cm
Relative Translational error: 16.69966 cm 
Relative Rotational error: 3.093489 degree

Best Case RMS error: 18.8568 cm

With Mask

RMS error: 1.79716cm
Relative Translational error: 2.2598cm 
Relative Rotational error: 0.6158846 degree

Best Case RMS error: 1.5409 cm
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walking_rpy
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Relative translational error 
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Error Metrics

Without Mask

RMS error: 51.4982cm
Relative Translational error: 30.59184cm 
Relative Rotational error: 6.0403042 degree

Best Case RMS error:  47.0009 cm

With Mask

RMS error: 3.9883 cm
Relative Translational error: 5.11032 cm 
Relative Rotational error: 1.1446668degree

Best Case RMS error: 3.7272 cm
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Let’s compare Masks !!

Note: All inference were carried out in Intel(R) Core(TM) i5-8250U CPU @ 1.60GHz (CPU only)
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Model Comparison on MultiEnv dataset

                    Ground Truth  ICNet Masking    BiSeNet masking

                  DeepLabV3Plus Masking              UNet Masking     Our fined tuned Masking
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Overlay Comparison of Masking Schemes

          Original Image           ICNet overlay BiSeNet overlay

     DeepLabV3Plus overlay UNet overlay              Our Fined tuned overlay 50



 Choose ICNet   (speed over quality)
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Mask Generation Using ICNet

● ICNet for mask generation
○ Due to fastest inference speed in CPU

● Mask generated using pre-trained ICNet 
Model

● 3 branches model architecture
● Internally 320x320 resizing of input during 

inference
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Further improvement of Mask

Common public human dataset

Robots perspective view

Focus on face and upper body
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Custom Dataset Generation
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https://app.diagrams.net/?scale=auto#G1wIIM4iFpwIpxakO2Fubz-7BHouQZl0Tf2z-sj45jA7Y


Multi Environment Walking Dataset (1435)

Taken as Training Set 55

https://app.diagrams.net/?scale=auto#G1wIIM4iFpwIpxakO2Fubz-7BHouQZl0Tf2z-sj45jA7Y


Locus Office walking dataset (1350)

Taken as Validation Set
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Fine Tuning ICnet
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Fine Tuning ICnet

miou vs epoch loss vs epoch 58



Fine Tuning ICnet
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Limitation and further improvement

● Focused in indoor environment
● Considers human as main dynamic objects
● Could perform motion segmentation instead of semantic 

segmentation
● Make robot more robust to changes in lighting
● Improve performance in texture less environments
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Thank you !!
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