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Abstract  

With the increased use of depth information in computer vision, monocular depth estimation 

has been an emerging field of study. It is a challenging task where many deep convolutional 

neural network-based methods have been used for depth prediction. The problem with most 

of these approaches is that they use a repeated combination of max-pooling and striding in an 

encoder, which reduces spatial resolution. In addition, these approaches use information from 

all the channels directly from the encoder, which is prone to noise. Addressing these issues, 

we present a multigrid attention-based densenet-161 model. It consists of a multigrid 

densenet-161 encoder that increases the spatial resolution and an attention-based decoder to 

select the important information from low-level features. We achieved absolute relative error 

(Absrel) of 0.109 and 0.0724 on NYU v2 and KITTI, dataset respectively. Our proposed 

method exceeded most evaluation measures with fewer parameters compared to the state-of-

the-art on standard benchmark datasets. We produce a dense depth map from a single RGB 

image which can be used to create a dense point cloud. The anticipated depth map is accurate 

and smooth, which can be used in several applications. 

Keywords: Convolutional Neural Network (CNN), depth estimation, dilation rate, multigrid, 

attention mechanism, depth map 

 Introduction 1.

Depth estimation from a two-dimensional image is one of the most challenging tasks 

in computer vision. It has been studied for a long time and has a wide range of applications in 

computer vision like augmented reality [1], robotic navigation, autonomous driving car, 
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semantic segmentation [2], image refocusing [3], scene understanding, and 3D 

reconstruction. Different approaches have been used to estimate the depth of two-dimensional 

images, such as stereo vision and structure-from-motion [4]. Since it requires multiple views 

of the same scene or multiple moving frames, those approaches may not always be suitable. 

There might be situations where multiple scenes are not available or such a setup is not 

possible. The above constraints motivated the need for monocular depth estimations through 

computer vision models.  

During the projection of 3D structure into the 2D image plane, some depth cues and 

3D knowledge are preserved. Estimating depth accurately from a single 2D image is a 

difficult task because the multiple 3D points can project into the same 2D location. To 

estimate depth, humans use different local depth cues like shadowing, texture gradient, 

standard size, relative size, perspective, occlusion condition, and layout of the entire shape. 

Deep convolutional neural networks (DCNN) have recently shown promising results in 

different visual tasks.  

Different DCNN-based supervised [5, 6, 7, 8, 9] and semi-supervised [10] learning 

models have attained splendid outcomes in monocular depth estimation. In recent works, the 

architecture is observed to be composed of two modules viz. dense feature extractor and 

depth predictor (decoder). High-performance classification models such as VGG, Resnet, and 

Densenet [11-13] are common choices for a dense feature extractor. The problem with this 

type of network is the reduced feature resolution caused due to repetitive pooling or stridden 

convolution operation. Reduction in feature resolution causes decimation of depth cues and 

spatial information. Additionally, these approaches take information from all channels 

without filtering relevant features, so the information is prone to noise.  

To obtain a high-resolution dense feature map, several techniques such as multi-scale 

networks [8] and multi-layer deconvolutional networks [14, 15] are used, which require high 

computational and memory costs with complicated network architecture. Considering the 

higher-order 3D geometric constraints such as surface normal [16], plane coefficient, and ray 

plane intersection [17] has shown great improvement in depth estimation. However, the 

problems with this method are its complex network structure and numerous parameters, 

which make it ill-suited for real-time 3D reconstruction. In augmented reality, synthetic 

depth-of-field, and other image effects [18, 19, 20] require fast and highly accurate depth 

estimation. Addressing these issues, we propose a simple multi-grid attention-based network 

architecture that produces highly accurate and quality depth estimations. Experimental results 
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on a standard benchmark show that our proposed method has surpassed most of the 

evaluation measures with a few network parameters compared to the state-of-the-art. The 

resulting depth maps are smooth and on par, if not more promising, compared to those 

generated by existing methods with fewer network parameters and reduced inference time. 

During testing, we adopt a post-processing technique that improves the evaluation metrics.  

Our contributions are as follows: a) Experiments with different CNN Architectures. b) 

Proposed a multigrid attention-based monocular depth estimation model. c) Study of our 

model performance on different depth ranges. d) Study of the effect on depth map with a 

scaling factor 

 Related Work 2.

2.1  Supervised Depth Estimation 

In general, the supervised approach takes images along with their depth data. The 

image is fed into the network and the corresponding output is tried to match that of the depth 

data. The depth data used as labels for this purpose are taken from multi-channel laser 

scanners or RGB-D cameras, or IR-based sensors. Saxena et al. [21] proposed a supervised 

approach to depth estimation from a single monocular image using a discriminatively-trained 

Markov Random Field (MRF) and extended it to use over-segmentation when introducing a 

3D dataset for the specific task [5]. Eigen and Fergus [7] proposed a multi-scale 

Convolutional Neural Network (CNN) capable of outputting depth maps directly from the 

input image using a progressive refinement of predictions using a sequence of scales.  

Due to the end-to-end nature of the method, many works improved upon this 

approach by incorporating several constraints and intermediate representations for surface 

normal estimation [22], using a post-processing refining step using Conditional Random 

Fields (CRFs) [23, 24, 25], or by discretizing the continuous depth values into multiple bins 

and labeling them with respect to their depth range [26]. Fu et al. [27] introduced a Spacing-

Increasing Discretization (SID) strategy to discretize depth and formulated a regression 

problem as an ordinal regression problem using a multi-scale network structure. Gan et al. 

[28] modeled the relationships of different image locations with an affinity layer and combine 

absolute and relative features in an end-to-end network. Yin et al. [16] enforced high-order 

3D geometric constraints by randomly sampling three points from the reconstructed 3D space 

to determine virtual normal directions. 
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2.2  Semi-Supervised Depth Estimation 

Semi-supervised ways of estimating the depth of images include a secondary training 

objective along with the primary one, i.e., supervised training, to incorporate the lack of 

training data required for supervised learning. Chen et al. [29] introduced a dataset “Depth in 

the Wild" consisting of images in the wild annotated with relative depth between pairs of 

random points and proposed an algorithm that learns to estimate metric depth using 

annotations of that depth. Kuznietsov et al. [10] used sparse ground-truth depth from LiDAR 

sensors for supervised learning and enforced the network to produce photo-consistent dense 

depth maps in a stereo setup using a direct image alignment loss. 

 Proposed Work 3.

In this section, we describe the implemented architecture, including the loss function, 

augmentation policy, and post-processing technique used during training and testing the 

network. 

3.1  Network Architecture 

 

Figure 1. Proposed Network Architecture 

The overview of the proposed architecture is illustrated in Figure 1. The network is 

composed of an encoder, a transitional block, and a decoder. For the encoder, to obtain a 

high-resolution dense feature map, we removed the pooling layers from the last block and 

introduced dilated convolutions with multiple dilation rates [30, 31] to build a multi-grid 
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densenet-161 network. The encoder encodes the input RGB image into a dense feature vector 

enriched with higher-level features. The feature vector is fed into a transition block which 

comprises a simple 1 × 1 convolutional layer followed by the batch normalization and ReLU 

activation function.  

The purpose of the 1 × 1 convolutional layer is to reduce the channel of the feature 

map generated by densenet-161. Inspired by Li et al. [32], the decoder is composed of several 

Feature Fusion Blocks (FFBs). The FFB Block is comprised of an Attention-based Feature 

Selection block (AFS) followed by a Feature Transform Block (FTB) and an Upsampling 

Layer. The purpose of FFBs is to combine features from different levels. FTB transforms 

features from the encoder suitable for the depth estimation task. The lower-level features 

from the encoder are passed to the Attention-based Feature Selection block (AFS) which 

prioritizes important channels from the low-level features that are summed to the high-level 

features. The encoded feature vector has an output resolution of  
𝐻

16
×

𝐿

16
, so to get the original 

resolution, an upsampling layer and associated skip connections are used. Instead of using 

deconvolution (“transposed convolution”), we have used upsampling (nearest neighbor) 

followed by convolution as our decoding layer to reduce the checkerboard artifacts [33]. 

3.2  Multigrid 

 

Figure 2. Multi Grid convolution 

As aforementioned, a multigrid densenet-161 network is used as the encoder. So to 

overcome the decimation of depth cues and spatial information, the concept of multigrid has 

been used. The pooling layer from the last block of the densenet has been removed and 

dilated convolutions have been introduced to obtain a high-resolution dense feature map [30, 
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31]. Since using the same dilation rate causes the “gridding” problem [31], we used different 

dilation rates for each layer. Continuous layers within the last block are assumed to form a 

group to eliminate the issue. A layer within a group has dilation of two, four, and eight, as 

shown in Figure 2. The preceding groups repeat the same pattern to form saw-tooth-like 

waves. Therefore, 24 layers of the last block of the densenet-161 have eight groups that 

follow the same rising edge of increasing dilation rate. 

3.3  Attention Mechanism 

One of the primary blocks present in the decoder is the Attention-based Feature 

Selection (AFS) block. Generally, not all features have equal importance in generating the 

results. So focusing on the relevant features is a crucial task carried out by the AFS Block 

[32]. The structure of AFS is shown in Figure 1. The high-level feature being encoded by the 

encoder is concatenated with the low-level features obtained from the skip connection. Rather 

than using all channels from the low-level features, the AFS block selects channels 

representing relevant features using the attention mechanism as shown in Figure 3. The dense 

feature maps are squeezed into a single vector with a global max pooling layer and are 

denoted by Fsq and the corresponding weight parameters are Fex(W). These parameters are 

learned during the training process, which gives relevant features higher weights. Thus only 

important feature channels are extracted from input Fsq to generate a scaling vector of shape 1 

× 1 × c, denoted by Fscale, that contains scaling weights for each input dense feature map. The 

scaling weights excite only the relevant channel required for a given task. 

 

Figure 3. Selecting important features [34]. 

3.4  Training Loss 

A larger distance has a large error contributing more to the loss function. As a result, 

models optimize themselves to reduce error for larger distances and neglect the error for 

smaller distances. To address this problem, we transfer the depth values in log space. Inspired 

by Eigen et al. [6], we used a scale-invariant loss function as shown in Equation 1. 
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 𝑙(𝑑) =
1

𝑇
∑ ‍𝑖 𝑑𝑖

2 −
𝜆

𝑇2
(∑ ‍𝑖 𝑑𝑖)

2     (1) 

Where,‍𝑑𝑖 = log (
𝑔𝑡𝑖

𝑝𝑖
), 𝑔𝑡𝑖 is the ground truth depth, 𝑝𝑖 is the predicted depth, 𝜆 is the 

mixing parameter, and 𝑇 denotes the number of pixels consisting valid ground truth values. 

From Equation 1, we get: 

 𝑙(𝑑) =
1

𝑇
∑ ‍𝑖 𝑑𝑖

2 −
1

𝑇2
(∑ ‍𝑖 𝑑𝑖)

2 +
1−𝜆

𝑇2
(∑ ‍𝑖 𝑑𝑖)

2    (2) 

From Equation 2, we can find that the loss is the sum of the variance and a weighted 

squared mean of the error in the log space. Hence, setting a higher 𝜆 enforces more focus on 

reducing the error variance, and we uncovered 𝜆 = 0.85 to best suit our work. Inspired by 

Lee et al. [17], properly scaling the range of the loss function betters the convergence and 

thus, the final training outcome. Our final training loss 𝐿 is as follows:  

 𝐿 = 𝛼√𝑙(𝑑)      (3) 

As per Lee et al. [17], we experimented with different values of 𝛼 and found 𝛼 = 10 

provides better performance. 

3.5  Augmentation Policy 

To improve generalization and avoid over-fitting, we adopted a geometric and color 

augmentation policy before training our network. We only considered horizontal flipping, 

i.e., mirroring, of the input image with a 50% of chance. We did not flip the image vertically 

since it didn’t increase the model performance and the flipped image can occur as a non-

augmented example (the sky will not be at the bottom). For the KITTI [35] dataset, we 

rotated the input image randomly in a range of [−1, 1] degrees. Inspired by Lee et al. [17], we 

added random contrast, brightness, and gamma to the input image in a range of [0.9, 1.1], 

with a chance of 50%. Before feeding the images to the model at training, we randomly 

cropped them to the size of 416 × 544 for NYU V2 [36] and 353 × 704 for KITTI [35] 

datasets. 

3.6  Post-Processing 

An additional post-processing technique has been implemented during testing, shown 

in Figure 4. The input RGB image is flipped horizontally and stacked over the original image. 

The stacked images are forwarded to the network to predict depth maps. The depth map 
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corresponding to flipped image denoted by df  is reversed back and is averaged with the depth 

map corresponding to the original image d0 to obtain the final depth map d as shown in 

Equation 4. From Table 3, we can observe that using the post-processing technique has 

improved overall evaluation metrics. 

 𝑑 =
𝑑𝑜+𝑑𝑓

2
      (4) 

 

Figure 4. Post-Processing 

 Experiments 4.

We conducted various experiments on two standard benchmarks to test and verify the 

effectiveness of our proposed method. We also compared our results with the state-of-the-art 

and found our method is on par, if not superior, compared to those generated by existing 

methods on a standard benchmark. 

4.1  Datasets 

4.1.1 NYUD-V2 

The NYUD-V2 [36] dataset contains 464 different indoor scenes captured as video 

sequences using Microsoft Kinect at the resolution of 480 × 640. The dataset contains 120 

thousand RGB-D pairs for training and 654 images for testing. Using the official train-test 

split, we train our method on a subset of 42,000 images taken from 249 scenes and tested 

with 654 RGB-D pairs from 215 scenes (654 images). We then align the raw RGB image and 

depth map for accurate pixel registrations, using the camera projection with the NYU toolbox 

in MATLAB. 
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4.1.2 KITTI 

KITTI [35] dataset contains data from 61 different outdoor scenes having over 93,000 

RGB and depth map pairs captured on driving cars with cameras and lidars. For training and 

testing, we follow the Eigen split [6] to compare with previous works. 

4.2  Implementation Details 

To implement our proposed network, we used TensorFlow [37] as our deep learning 

framework. We used the Adam optimizer [38] to train the model with‍𝛽1 = 0.9, ‍𝛽2 = 0.999, 

and 𝜖 = 10−8 along with an exponential decaying learning rate of 0.96 for every 2,000 steps 

and starting learning rate of 10
-4

. Each dataset was trained for 20 epochs. We performed our 

experiments using Google Colab with either Nvidia T4 or P-100 GPU. We use DenseNet-161 

[13] as our base model for encoder pre-trained on ImageNet [39] classification datasets. 

4.3  Evaluation Metrics 

For evaluating our work, we use the following metrics. 

𝐴𝑏𝑠𝑟𝑒𝑙:
1

𝑇
∑ ‍

𝑑∈𝑇

|𝑑′𝑖 − 𝑑𝑖|

𝑑𝑖
 

𝑅𝑀𝑆𝐸:√
1

𝑇
∑ ‍

𝑑∈𝑇

(𝑑′𝑖 − 𝑑𝑖)
2 

log10:√
1

𝑇
∑ ‍

𝑑∈𝑇

(log𝑑′𝑖 − log𝑑𝑖) 

Threshold: percentage‍of‍𝑑𝑖such‍that‍max(
𝑑𝑖
𝑑′𝑖

,
𝑑′𝑖
𝑑𝑖
) = 𝛿 < 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 

where 𝑑′i and di denote predicted depth and corresponding ground truth values of i
th

 

pixel respectively and T is the total number of pixels for which there exist both valid ground 

truth and predicted depth. 

4.4  Ablation study 

4.4.1 Experiments with different Architectures 

In this experiment, we started with a simple encoder-decoder architecture and tested 

with different encoders, i.e., densenet-121 (Simple 121), densenet-169 (Simple 169), and 

densenet161 (Simple 161) [13]. As in Table 1, densenet-161 performed best in most metrics, 
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so we selected densenet-161 as our encoder. After selecting the encoder, we added Atrous 

Spatial Pyramid Pooling (ASPP 161) and multigrid (multi 161) in the densenet-161 block. 

We found improvement in the model’s performance after adding multigrid but no refinement 

with ASPP, so we continued our experiment with multigrid in the densenet-161 block. 

Further cascading several multigrid blocks in the last block of densenet-161 (Cascaded 161) 

slightly increased the performance in trade-off with parameters size and training time, so we 

discarded the cascaded block. To find the influence of the attention mechanism, we used the 

decoder, inspired by Li et al. [32]. As shown in Table 1, we observed a significant 

improvement in the performance of our models by adding an attention mechanism with 

multigrid (Multi attention 161). 

Table 1. Evaluating Results on NYUv2 Dataset [36] with different architectures. Using a 

multigrid with densenet-161 [13] improved our performance. Enforcing attention 

mechanisms with multi-grid has shown the best result in all metrics. Using medians as a 

scalar factor improves our performance to a greater extent. The best results without scalar 

factor are bold and the results obtained after scaling are underlined. 

Methods #Params 
 lower values are better 

AbsRel RMSE log10 

higher values are better 

𝛿 < 1.25 𝛿 < 1.252 𝛿< 1.253 

Simple 121 8.8M 0.1235 0.415 0.052 0.849 0.9472 0.994 

Simple 161 28M 0.1167 0.398 0.049 0.866 0.975 0.995 

Simple 169 14M 0.1194 0.403 0.050 0.860 0.977 0.995 

Multi 169 - 0.1145 0.386 0.048 0.873 0.978 0.995 

Multi 161 29M 0.1129 0.386 0.047 0.876 0.979 0.996 

ASPP 161 31M 0.1169 0.399 0.050 0.862 0.977 0.996 

Cascaded 161 32M 0.1117 0.383 0.047 0.875 0.980 0.996 

Multi attention 161 31M 0.110 0.381 0.047 0.877 0.981 0.996 

With median scalar factor 31M 0.0909 0.341 0.038 0.913 0.983 0.997 

 

4.4.2 Study of our model performance on different depth ranges 

Our study shows that the regression loss function focuses more on the mean error; 

consequently, it tends to converge to the mean depth values, and this causes more significant 

errors in areas that are either too far from or too close to the camera. To examine this 

problem, we separated the testing depth map into three different ranges, a shorter range (0m - 

3m), a middle range (3m - 7m), and a more extended range (7m - 10m). We obtained the 



Sangam Man Buddhacharya, Rabin Adhikari, Nischal Maharjan 

Journal of Innovative Image Processing, September 2022, Volume 4, Issue 3  137 

results as shown in Table 2. We can observe that the depth map in the middle range has 

performed better in all evaluation metrics. Therefore, the middle range distance is optimized 

more than nearer and farther distance. 

Table 2. Result of NYU v2 [36] test dataset for different ranges. Error is minimum for range 

(3m - 7m) and maximum for range (7m - 10m). The best output is shown in bold. 

Ranges 

 

 

AbsRel 

lower is better 

log10 RMSE sqRel 

 

 

logRMSE 

higher is better 

𝛿 < 1.25 𝛿 < 1.252 𝛿< 1.253 

0m - 3m 0.1148 0.048 0.288 0.053 0.142 0.869 0.978 0.995 

3m - 7m 0.1105 0.046 0.510 0.106 0.130 0.892 0.974 0.993 

7m - 10m 0.1584 0.064 1.176 0.321 0.166 0.805 0.973 0.983 

4.4.3 Effect of scaling factor 

The predicted depth is a multiple of some scalar factors. Because if we multiply our 

predicted result with a constant such that its median matches the median of the ground truth, 

then it produces a highly accurate depth map.  

 𝑆𝑐𝑎𝑙𝑒𝑓𝑎𝑐𝑡𝑜𝑟 =
𝑚𝑒𝑑𝑖𝑎𝑛‍𝑜𝑓‍𝑔𝑟𝑜𝑢𝑛𝑑−𝑡𝑟𝑢𝑡ℎ‍𝑑𝑒𝑝𝑡ℎ

𝑚𝑒𝑑𝑖𝑎𝑛‍𝑜𝑓‍𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑‍𝑑𝑒𝑝𝑡ℎ
    (5) 

The result after scaling is shown in Table 1, we can observe that error has drastically 

reduced. With this fact, we can conclude that our predicted depth map is slightly wrongly 

scaled but has a very smooth and promising relative depth map, which can be confidently 

used in different applications such as augmented reality, 3D reconstruction, image refocusing, 

etc. 

4.5  Comparison with state-of-the-art results on a standard dataset 

In this section, we compare the results from our model with a few previous 

approaches on the standard dataset, NYUv2 [36], and KITTI [35]. Table 3 shows that our 

proposed method with post-processing exceeds other existing methods across the most 

evaluation metrics. Compared to Yin et al. [16] and Lee et al. [17], we have reduced the 

RMSE error by 3.6% and 1.2% respectively.  

To test the generalization of our method, we also tested the proposed model on the 

outdoor scene KITTI dataset. Results in Table 4 show that our model has improved in 
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RMSElog and 𝛿 < 1.25 metrics along with comparable results with previous state-of-the-art 

methods on other metrics. 

Table 3. Evaluation results on NYU Depth v2 [36]. The best output is shown in bold. 

Methods #Params 
Lower values are better 

Absrel RMSE log10 

Higher values are better 

𝛿 < 1.25 𝛿 < 1.252 𝛿< 1.253 

Saxena et al. [5] - 0.349 1.214 - 0.447 0.745 0.897 

Wang et al. [9] - 0.220 0.824 - 0.605 0.890 0.970 

Liu et al. [8] - 0.213 0.759 0.087 0.650 0.906 0.976 

Eigen and Fergus [7] - 0.158 0.641 - 0.769 0.950 0.988 

Chakrabarti et al. [43] - 0.149 0.620 - 0.806 0.958 0.987 

Li et al. [44] - 0.152 0.611 0.064 0.789 0.955 0.988 

Laina et al. [14] - 0.127 0.573 0.055 0.811 0.953 0.988 

Xu et al. [45] - 0.121 0.586 0.052 0.811 0.954 0.987 

Lee et al. [46] - 0.139 0.572 - 0.815 0.963 0.991 

Fu et al. [27] 110M 0.115 0.509 0.051 0.828 0.965 0.992 

Qi et al. [47] - 0.128 0.569 0.057 0.834 0.960 0.990 

Yin et al. [16] - 0.108 0.416 0.048 0.875 0.976 0.994 

Lee et al. [17] 47.0M 0.110 0.392 0.047 0.885 0.978 0.994 

Ours 31M 0.110 0.381 0.047 0.877 0.981 0.996 

Ours with post-processing 31M 0.109 0.380 0.047 0.879 0.982 0.996 

Table 4. Evaluation results on KITTI Eigen split [6] for the range of 0-80m. (CS+K) 

represents a model pre-trained on the Cityscapes dataset and fine-tuned with KITTI [35]. 

Methods  
AbsRel 

Lower is better 

SqRel RMSE 

 
RMSE log 

Higher is better 

𝛿 < 1.25 𝛿 < 1.252 𝛿 

 
< 1.253

 

Saxena et al. [21] 0.280 3.012 8.734 0.361    

Eigen et al. [6] 0.203 1.548 6.307 0.282 0.702 0.898 0.967 

Liu et al. [8] 0.201 1.584 6.471 0.273 0.680 0.898 0.967 

Godard et al. [48] (CS+K) 0.114 0.898 4.935 0.206 0.861 0.949 0.976 

Kuznietsov et al. [10] 0.113 0.741 4.621 0.189 0.862 0.960 0.986 

Gan et al. [28] 0.098 0.666 3.933 0.173 0.890 0.964 0.985 

Fu et al. [27] 0.072 0.307 2.727 0.120 0.938 0.990 0.998 

Yin et al. [16] 0.072 - 3.258 0.117 0.938 0.990 0.998 

Ours with post-processing 0.072 0.331 3.169 0.113 0.939 0.990 0.998 
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4.6  Outputs on NYU and KITTI datasets 

The predicted output from our proposed model on KITTI and NYU v2 datasets is 

shown in Figure 5 and Figure 6, respectively. 

  

  

  

  

  

           (a) RGB Image                                                    (b) Predicted output  

Figure 5. Estimating depth by our proposed model on KITTI [35] dataset. a) and b) are the 

Input RGB images and their respective predicted depth map. Blue represents nearer, and red 

represents farther. Output from our model is continuous and smooth with fewer artifacts. 

Although the predictions don’t contain any artifacts, the error seems to be large for larger 

distances, i.e., the sky seems to have different depths in different areas. 

   



MONOCULAR DEPTH ESTIMATION USING A MULTI-GRID ATTENTION-BASED MODEL 

ISSN: 2582-4252  140 

   

   

   

          (a) RGB Image          (b) Predicted depth map           (c) Ground truth 

Figure 6. The estimated depth by the proposed model on the NYUv2 dataset [36]. a) 

Input RGB image, b) predicted depth map and c) ground truth. Blue represents nearer, and 

red represents farther. Our prediction has a similar edge to that of the ground truth without 

any presence of artifacts. The predictions are smooth, almost resembling the ground truth. 

The occlusions created from Kinect due to its stereo effect from the sensor and IR projector 

are greatly minimized. We tested our model with an image containing a mirror and found that 

our model predicts a depth map as if there is not a mirror and the person is located at a farther 

distance. 

4.7  Outputs on a Custom dataset 

To better understand the performance of our proposed method, we have also tested 

our model on a custom dataset. For dataset preparation, XBOX 360 Kinect Sensor has been 

used to capture RGB images and the depth map of various objects in the room. The depth 

map from the Kinect has been used as ground truth to compare with the predicted output of 

our proposed model. The results can be seen in Figure 7. The outputs show that our method 

produces smooth and quality results with fewer artifacts in the diverse scene; therefore, it can 

be used for different applications in computer vision. We also generated the dense point 
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cloud from the predicted depth map and found that some flat objects are predicted to be 

curved. 

    

    

    

    

    

 (a) RGB Image            (b) Ground truth        (c) Predicted depth map   (d) Dense point cloud 

Figure 7. Images captured with Kinect V1 

 Conclusion 5.

This paper proposes a monocular depth estimation network using multigrid densenet-

161 as an encoder and attention-based decoder. By adding multigrid, we achieved a higher 

spatial resolution from the encoder, and the attention mechanism in the decoder further 

filtered the channels. Therefore, it improved the model performance significantly, which is 

verified by our experimental results. The proposed method surpasses most evaluation metrics 

on the NYU v2 dataset while achieving comparable results on the KITTI dataset, with 
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comparatively fewer parameters. Analyzing the output depth maps on NYU v2 and KITTI 

dataset, the model’s predictions have smooth and pretty clear boundaries at the edges with 

continuous varying depth at its surface. Additional study on different ranges shows that our 

model works best for the range (3m -7m) for the indoor scene. Further study on the scaling 

factor confirms that the predicted depth is slightly scaled by a constant factor, which makes it 

suitable for the application that requires relative depth. These results of the scaling factor 

leave room for future research on finding the appropriate multiplying factor and improving 

the model’s overall performance. 
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