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Abstract

3D reconstruction is a core task in computer vision, tra-
ditionally addressed through Structure-from-Motion (SfM)
pipelines that rely on feature matching and bundle adjust-
ment (BA). However, in challenging scenarios with sparse
views, these pipelines often fail to provide accurate results.
Recent deep learning models, such as the Visual Geometry
Grounded Transformer (VGGT), can jointly predict camera
parameters, depth maps, point maps, and feature tracks, but
their predictions typically lack global alignment. In this
project, we explore combining VGGT predictions with BA
(VGGT+BA) to improve sparse-view 3D reconstruction. We
investigate two complementary directions: improving the
inputs to BA and refining the BA block itself. For the inputs,
we experiment with alternative tracking modules, including
VGGSfM and MASt3R, and study the effects of query point
selection and filtering correspondences. For BA, we eval-
uate iterative re-optimization with filters and different loss
formulations with scale adjustments. Our results show that
using VGGT priors with optimized BA improves the results
compared to standalone baselines.

1. Introduction
3D reconstruction is a fundamental task in robotics, aug-

mented and virtual reality (AR/VR), autonomous driving,
and several other domains. A wide range of methods
have been proposed to achieve reliable reconstruction, with
Structure-from-Motion (SfM) being one of the most widely
adopted classical approaches. SfM can provide accurate
reconstructions when many viewpoints are available and
when reliable correspondences can be established across
images. However, its performance degrades in challenging
scenarios such as low overlap between views, low-parallax
camera trajectories, highly symmetric structures, or tex-
tureless scenes where feature point detection and match-
ing become unreliable. In such cases, especially when only
sparse views are available, 3D reconstruction becomes sig-
nificantly more difficult. Recent deep learning–based ap-
proaches have attempted to overcome some of these limita-

tions. In particular, the VGGT model has shown promising
results in handling challenging settings, especially in tex-
ture less regions where classical methods often fail. VGGT
predictions tend to preserve local structures, however they
often suffer from global misalignment, as illustrated in Fig-
ure 1. We can see predicted point cloud(Red) has correct
structure but is not perfectly aligned with the ground truth
point clouds(green).To address this issue, we try combin-
ing VGGT predictions with bundle adjustment (BA). By
using VGGT outputs as strong priors for BA, our goal is to
achieve more accurate and globally consistent reconstruc-
tions, even in sparse and challenging view setups.

Figure 1. Limitations of VGGT

2. Related Works
Classical 3D Reconstruction Among the traditional ap-

proaches to 3D reconstruction, the Structure-from-Motion
(SfM) paradigm is the most widely used appraoch. In
this pipeline, corner points are detected, and their feature
descriptors are computed, and correspondences are estab-
lished across multiple views. These correspondences are
then used to estimate camera poses and triangulate 3D
points. Despite the emergence of more modern techniques,
such pipelines remain popular due to their robustness, inter-
pretability, and strong theoretical foundations.

Deep Learning Methods
With the advent of deep learning, many elements of

SfM pipeline such as keypoint detection and feature match-
ing have been enhanced by deep learning models often
achieving state of art performance. VGGSfM [6] is one
of the deep learning method which is end to end differen-
tiable. DUSt3R [7] is a method used for Dense and Un-
constrained Stereo 3D Reconstruction from a arbitrary set
of images. MASt3R-SfM [1] is another method for un-



Figure 2. ETH3D Dataset

Figure 3. VGGT architecture

constrained SfM based upon MASt3R [2] which is tailored
version of DUSt3R trained for with additional objective of
dense matching. however these methods still require set of
images and fails when the view points are limited. In this
work we try to achieve similar performance with limited
sparse number of viewpoints.

3. Methodology

3.1. Dataset

For this project we have used ETH3D dataset for com-
parison and evaluation of different methods. The dataset is
comprised of images, depth and camera poses. We sample
8 images of a particular scene that has significant change
in viewpoints but also has overlapping regions as shown in
figure 2. Using only 8 sparse view points we aim to recon-
srtuct the scene from them.

3.2. VGGT+BA

VGGT [5] is a transformer based model that predicts
camera parameters, depth maps, point maps, and feature
tracks directly. The outputs of VGGT looks promising. Our
proposed method is to use the VGGT prediction as priors
for bundle adjustment optimization (VGGT+BA). Figure 3
shows the architecture of VGGT model. It predicts camera
parameters, depth maps, point maps, and tracks. We used
VGGT+BA as our baseline as shown in figure 4 and tried to
improve the performance over that benchmark.

3.3. Improving track predictions

The quality of bundle adjustment (BA) strongly depends
on the accuracy of the input tracks. To investigate this, we

Figure 4. Overview of VGGT+BA

Figure 5. Filtering tracks

replaced the default VGGT track predictions with alterna-
tive tracking modules. Specifically, we experimented with
the VGGSfM [6] tracking module and MASt3R [2] tracks.
Since MASt3R was specifically trained to find the dense
matches it has a high potential to find more accurate corre-
spondences leading to better input tracks. These alternative
tracking strategies were integrated into our pipeline to study
their effect on reconstruction performance.

3.4. Filtering Matches

Next way of improving tracks were to apply some filters
to output of tracking module. Since the trackers we used
has their own limitation we were passing tracks without any
refinement. Hence we also experimented with refining the
matches using epipolar constraint. Given matches {x1, x2}
from two view points they should satisfy the epipolar con-
straint xT

2 Fx1 = 0 where F is the fundamental matrix
across two views. We have the camera parameters estimated
by VGGT model which are used to estimate the fundamen-
tal matrix F and used it to filter the matches as shown in
figure 5. However since there is uncertainty in the predic-
tion of VGGT model we still can’t be sure the filter is more
accurate hence we also have relaxed the filtering threshold.

3.5. Reapplying BA(ReBA)

As per [4] since BA is severely affected by outliers, a
second step of BA can significantly improve the results. So
we also experimented by filtering certain points on basis
of reprojection error and triangulation angle and reapplying
the BA.



3.6. BA Optimization

Beside the inputs to the BA we can also change the op-
timization parameters. We specifically experimented with
loss functions for bundle adjuster. We replaced trivial L2
loss with Cauchy and Soft L1 loss.

4. Experiments and Results
VGGSfM vs MASt3R VGGSfM tracks had already per-

formed better than the VGGT track predictions. Therefore
here we experimented with MASt3R matches for predicting
tracks and compared it with the VGGSfM tracking module.
However the issue with MASt3R is that it estimates pair-
wise matches. We first used tracks with tracklen=2 for all
pairs using dense matches. But the performance was not
good for track length of 2. We also experimented by esti-
mating sparse query points using superpoint for query im-
age and finding the matches across remaining 7 images in
order to increase the tracklen.

Metrics(Support =109) VGGSfM MASt3R

Intrinsics fovx error(deg) ↓ 0.98 0.96
fovy error(deg) ↓ 1.60 1.00

Extrinsics

auc@01(%) ↑ 74.90 71.13
auc@03(%) ↑ 83.38 80.23
auc@05(%) ↑ 86.78 84.26
auc@10(%) ↑ 90.49 88.96
auc@20(%) ↑ 93.42 92.36
auc@30(%) ↑ 94.77 94.03

Table 1. Camera metric comparison for VGGSfM vs MASt3R
tracking Module

Metrics(Support =109) VGGSfM MASt3R

Error rmse mean(cm) ↓ 899.36 434.32
rmse median(cm) ↓ 6.69 10.56

AUC auc@02cm(%) ↑ 20.67 16.59
auc@04cm(%) ↑ 32.28 27.97
auc@06cm(%) ↑ 40.23 35.97
auc@08cm(%) ↑ 46.20 42.10
auc@10cm(%) ↑ 50.92 47.00

Table 2. 3D metric comparison for VGGSfM vs MASt3R tracking
Module

However we found that even though MASt3R was
trained for task of finding matches tracking accuracy was
better for VGGSfM than the MASt3R as shown in table 3.
We also notice that using MASt3R matches we have better
intrinsic paramters prediction for camera but the extrinsic

Metrics(Support =109) VGGSfM MASt3R

Error tracking error/mean ↓ 2.13 4.07
tracking error/median ↓ 0.90 2.14

Statistics mean track length ↑ 3.79 3.85
median track length ↑ 3.89 3.87

max track length ↑ 7.07 7.11
full track percentage ↑ 6.85 5.43

Table 3. Tracking Statistics and error comparison for VGGSfM vs
MASt3R tracking Module

Figure 6. Query points effect on camera accuracy and time com-
plexity

parameters are better for VGGSfM as shown in table 1. Re-
garding the 3D reconstruction accuracy the VGGSfM tracks
are better than the MASt3R tracks as indicated in table. 2

Effect of number of query points Since we are us-
ing the superpoint for the estimation of the query points
in the query image and finding matches in remaining ones,
we also tried to see the effect of specifying certain num-
ber of query points. Increasing the query point to maxi-
mum limit has only slight improvement in the metrices but
the time complexity was very high due to large number of
points to be optimized. If we are to just optimize the cam-
era paramters few points should have been sufficient. De-
creasing the query points it should be able to achieve sim-
ilar performance in camera parameters estimation without
significant decrease in accuracy but within very less time
complexity. We can see in figure 6 that the time taken for
the bundle adjustment decreases with decrease in number of
query points with very insignificant drop in the accuracy.

Epipolar constraint Filter Using Epipolar constraint
filter did increase the tracking accuracy as shown in table
4 however the final reconstruction perfromance was not im-



proved. Using epipolar constraint filter reduced the tracklen
across the images and that might explain the underperfor-
mance in reconstruction metrics eventhough we have the
better tracking error.

Metrics(Support =84) without filter with filter

Error mean error ↓ 2.11 1.70
median error ↓ 0.89 0.82

Statistics mean tracklen ↑ 3.99 2.77
median tracklen ↑ 4.12 2.68

max tracklen ↑ 7.29 6.52
full track% ↑ 7.95 3.12

Table 4. Tracking Statistics and error comparison for with and
without epipolar filter

Reapplying BA Reapplying bundle adjustment with
some filter on the resulting reconstruction from first pass
BA has slight improvement in the performance but not that
significant indicating we might need some better filtering
before reapplying the second pass of bundle adjustment.

Loss Functions Among trivial(L2 loss), Soft L1 loss
and robust(Cauchy loss) we find that Cauchy Loss has bet-
ter improvement in the reconstruction metrics as shown in
tables 5 and 6. However we see there are some outltiers
based on mean rmse error in 3d reconstruction points.

Metrics L2 loss Soft L1 Cauchy

Intrinsics fovx error(deg) ↓ 1.16 1.07 0.99
fovy error(deg) ↓ 1.64 1.41 1.22

Extrinsics auc@01(%) ↑ 72.44 76.63 78.60
auc@03(%) ↑ 81.36 84.09 85.44
auc@05(%) ↑ 85.04 86.98 88.10
auc@10(%) ↑ 89.11 90.27 90.95
auc@20(%) ↑ 92.31 93.04 93.40
auc@30(%) ↑ 93.83 94.42 94.67

Table 5. Camera metric comparison for loss functions

Metrics L2 loss Soft L1 Cauchy

Error rmse mean(cm) ↓ 847.48 2121.21 3621.12
rmse median(cm) ↓ 7.55 8.87 6.31

AUC auc@02cm(%) ↑ 20.12 21.80 22.96
auc@04cm(%) ↑ 31.68 33.40 34.74
auc@06cm(%) ↑ 39.56 41.30 42.63
auc@08cm(%) ↑ 45.48 47.24 48.53
auc@10cm(%) ↑ 50.16 51.92 53.19

Table 6. 3D metric comparison for different loss functions

Also the change of scale show prominent effect on the
performance. As the scale is decreased the performance in-
creases and vice versa as shown in tables 7 and 8. So cauchy
loss with scale of 0.05 has best performance in comparison
to other setting of loss and hyperparameters.

Metrics Cauchy Loss scales

0.05 0.1 0.2 0.5 1 2 3

fovx err ↓ 0.66 0.66 0.69 0.85 0.99 1.07 1.10
fovy err ↓ 0.81 0.81 0.93 1.12 1.22 1.40 1.46

auc@01 ↑ 84.54 84.42 83.65 81.40 78.60 76.44 75.36
auc@03 ↑ 88.98 88.42 88.39 87.34 85.44 84.01 83.29
auc@05 ↑ 90.76 90.23 90.28 89.54 88.10 86.93 86.45
auc@10 ↑ 92.92 92.43 92.47 92.01 90.95 90.24 89.99
auc@20 ↑ 94.80 94.35 94.33 94.06 93.40 92.98 92.89
auc@30 ↑ 95.87 95.39 95.35 95.13 94.67 94.39 94.32

Table 7. Effect of different scale for Cauchy Loss function on
Camera metrics

Metrics Cauchy Loss scales

0.05 0.1 0.2 0.5 1 2 3

median ↓ 5.49 5.65 5.59 5.82 6.31 7.05 9.11

auc@02 ↑ 24.93 24.93 25.07 24.24 22.96 22.04 21.38
auc@04 ↑ 37.13 37.13 37.03 36.05 34.74 33.70 32.93
auc@06 ↑ 45.17 45.16 45.00 43.98 42.63 41.61 40.79
auc@08 ↑ 51.08 51.06 50.92 49.87 48.53 47.53 46.72
auc@10 ↑ 55.68 55.64 55.53 54.48 53.19 52.18 51.40

Table 8. Effect of different scale for Cauchy Loss function on 3D
metrics

5. Future Enhancements

There is lot of ways we can improve on the current state.
From all the experiments conducted it seems having in-
creased track length across all views has most prominent
effect on the final outcome. Also there could be redun-
dant tracks so completing and merging tracks could improve
the final results. Use of method mentioned in Pixel-Perfect
SfM [3] in order to refine the keypoint for better tracks can
be another direction which can be explored.

6. Conclusion

In conclusion, our experiments demonstrate that us-
ing VGGT predictions as priors for Bundle Adjustment
(VGGT+BA) yields better reconstruction results than re-
lying on VGGT predictions alone, particularly in terms of



achieving improved global alignment. Furthermore, we ob-
serve that VGGSfM tracks outperform those generated by
MASt3R, as the latter is based on pairwise matching. Our
analysis also suggests that track length plays a more signif-
icant role in the final reconstruction quality than tracking
accuracy itself. Thus, enhancing track length across images
could further improve performance. Finally, careful opti-
mization of bundle adjustment parameters can also lead to
better results. Among the loss functions experimented, the
Cauchy loss with a lower scale provides more robust results
compared to the trivial loss and the Soft L1 loss.
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