3D Reconstruction in Challenging Sparse View Setup

Nischal Maharjan

Universität des Saarlandes ETH Student Summer Research Fellowship 2025

Supervisor: Sergey Prokudin and Yutong Chen Computer Vision and Learning Lab

Introduction

3d Reconstruction

Structure from Motion

Structure from Motion Pipeline

Limitations

- extreme viewpoint changes in low-overlap,
- low-parallax or high-symmetry scenarios.
- Scene without texture makes it difficult to detect feature points

VGGT Model- Predicts camera parameters and point maps

VGGT Model- Predicts camera parameters and point maps

- Given Input Images
- It outputs
 - Camera Parameters
 - Depth Maps
 - Point Maps
 - Tracking points

Drawbacks of VGGT

Green - Ground truth Red- Prediction

The Structure is correct but lacks global alignment

Drawbacks of VGGT

Green - Ground truth Red- Prediction

Goal: VGGT+BA (Use VGGT predictions as prior for BA)

Bundle Adjustment

• Bundle Adjustment minimizes the reprojection error

$$reproj_error = x^i_j - P_i X_j$$

where x_j^i is the 2d point corresponding to X_j in i^{th} viewpoint and $P_i = K_i[R_i|t_i]$ is the projection matrix of i^{th} camera view

$$\left. P_i, X_j = argmin_{P_i, X_j} \sum_{i,j} ||x_j^i - P_i X_j||^2
ight|$$

VGGT+BA

Green - Ground truth Red- VGGT Prediction Yellow - VGGT + BA

VGGT+BA

Green - Ground truth Red- VGGT Prediction Yellow - VGGT + BA

Improve the inputs to the BA: Input tracks

Improve the BA block

Experiments

1. Inputs

- a. VGGSfM vs MASt3R tracking module
- b. Effect of query points
- c. Filtering Correspondences

2. BA parameters

- a. Reapplying BA
- b. Loss Fuction

Metrics

- Camera Metric
 - a. Intrinsics -> error in field of view
 - b. Extrinsic -> Computes how accurately the rotation and translation are estimated
- 2. 3D metric
 - a. Error in position of point clouds
 - b. Accuracy of points
- 3. Tracking metric
 - a. Tracking error
 - b. Tracking statistics

ETH3D Dataset

VGGSfM Tracks

- Gets embeddings features for query points using 2d CNN
- Creates Cost volume
 Pyramid
- Transformer to update tracks
- Coarse to fine tracking

MASt3R Tracks

- Build upon DUSt3R architecture
- Specifically targeted to finding dense matches
- Limitation: Used for Pair-wise match estimation

VGGSfM Tracks Vs MASt3R tracks

Camera Metrics	Camera Metrics (Support = 109)		
Extrinsics	auc@01(%) ↑	74.90	71.13
	auc@03(%) ↑		80.23
	auc@05(%) ↑		84.26
	auc@10(%) ↑	90.49	88.96
	auc@20(%) ↑	93.42	92.36
	auc@30(%) ↑	94.77	94.03
Intrinsics	fovx error(deg) ↓		0.96
	fovy error(deg) ↓	1.60	1.00

VGGSfM tracks lead to better extrinsics metrics whereas MASt3R tracks has better intrinsic metrics

VGGSfM Tracks Vs MASt3R tracks

3D Metric	cs (Support = 109)	VGGSfM	MASt3R
Error	rmse_mean(cm) ↓	899.36	434.32
	rmse_median(cm) ↓	6.69	10.56
AUC	auc@02cm(%) ↑	20.67	16.59
	auc@04cm(%) ↑	32.28	27.97
	auc@06cm(%) ↑	40.23	35.97
	auc@08cm(%) ↑	46.20	42.10
	auc@10cm(%) ↑	50.92	47.00

VGGSfM tracks are better than MASt3R tracks

VGGSfM Tracks Vs MASt3R tracks

Tracking Metrics	Tracking Metrics (Support = 109)			
Track error	tracking_error/mean ↓	2.13	4.07	
	tracking_error/median ↓			
Track statistics	rack statistics mean_track_length ↑		3.85	
	median_track_length ↑		3.87	
	max_track_length ↑		7.11	
	full_track_percentage ↑			

VGGSfM tracks are better than MASt3R tracks

Effect of query points

Camera Metrics (Support = 109)		max_query_pts = 2048	max_query pts = inf
Extrinsics	auc@01(%) ↑	70.36	70.27
	auc@03(%) ↑	79.46	79.34
auc@05(%) ↑		83.47	83.14
	auc@10(%) ↑	88.14	87.40
	auc@20(%) ↑	91.68	91.02
	auc@30(%) ↑	93.53	92.83
Intrinsics	fovx error(deg) ↓	1.08	1.12
	fovy error(deg) ↓	1.12	1.19

Change in metrics were very insignificant but change in time complexity was significant

Effect of query points

- Investigated the camera metric accuracy and time complexity for BA over number of query pts
- Accuracy has slight decrease but time taken for BA has significant drop when less points are used
- In case robust triangulation method exists estimating camera metric with less points decreases time without significant drop in performance

Epipolar Constraint

$$x_2^T F x_1 = 0$$

$$F = K^{-T}EK^{-1}$$
 $E = [t]_{ imes}R$

Fundamental matrix can be estimated from intrinsics and extrinsic parameters

Tracking Metrics	(Support = 94) (Cauchy loss)	without filter	with filter
Track error tracking_error/mean ↓		2.11	1.70
	tracking_error/median ↓		0.82
Track statistics	mean_track_length ↑	3.99	2.77
	median_track_length ↑	4.12	2.68
	max_track_length ↑	7.29	6.52
	full_track_percentage ↑		3.12

Tracking error decreased however the track length also was decreased

Camera Metrics (Support = 94) (Cauchy loss)		without filter	with filter
Extrinsics	auc@01(%) ↑	87.95	75.07
	auc@03(%) ↑	93.445	83.54
	auc@05(%) ↑	95.31	87.16
	auc@10(%) ↑	97.17	90.95
	auc@20(%) ↑	98.39	93.90
	auc@30(%) ↑	98.88	95.26
Intrinsics	fovx error(deg) ↓	0.49	0.84
	fovy error(deg) ↓	1.05	1.25

Using filter didn't improve the performance even though the tracking error was improved

3D Metric	s (Support = 94) (Cauchy loss)	without filter	with filter
Error	rmse_mean(cm) ↓	4444.10	2313.32
	rmse_median(cm) ↓	5.07	17.44
AUC	auc@02cm(%) ↑	24.03	22.74
	auc@04cm(%) ↑	36.06	34.99
	auc@06cm(%) ↑	44.14	43.36
	auc@08cm(%) ↑	50.20	49.60
	auc@10cm(%) ↑	54.97	54.48

Using filter didn't improve the performance even though the tracking error was improved

Re-applying BA (ReBA)

- Filter 3D points based upon reprojection error and triangulation angle
- Re-apply BA on filtered set of points

Re-applying BA (ReBA)

3D Metric	s (Support = 109)	First BA	ReBA
Error	rmse_mean(cm) ↓	13.65	15.29
	rmse_median(cm) ↓	6.59	6.62
AUC	auc@02cm(%) ↑	22.95	23.27
	auc@04cm(%) ↑	34.98	35.14
	auc@06cm(%) ↑	43.08	43.16
auc@08cm(%) ↑		49.11	49.12
	auc@10cm(%) ↑	53.82	53.80

Reapplying BA there is slight improvement in accuracy but not significant

Loss Functions

- Trivial (L2 loss)
- Soft_L1 loss
- Robust (Cauchy loss)

Loss Functions

Camera Metrics (Support = 116)		L2 loss	Soft_L1 loss	Cauchy loss
Extrinsics	auc@01(%) ↑	72.44	76.63	78.60
	auc@03(%) ↑	81.36	84.09	85.44
	auc@05(%) ↑	85.04	86.98	88.10
	auc@10(%) ↑	89.11	90.27	90.95
	auc@20(%) ↑	92.31	93.04	93.40
	auc@30(%) ↑	93.83	94.42	94.67
Intrinsics	fovx error(deg) ↓	1.16	1.07	0.99
	fovy error(deg) ↓	1.64	1.41	1.22

Cauchy loss performed better than other

Loss Functions

3D Metri	3D Metrics (Support = 116)		Soft_L1 Loss	Cauchy Loss
Error	rmse_mean(cm) ↓	847.48	2121.21	3621.12
	rmse_median(cm) ↓	7.55	8.87	6.31
AUC	auc@02cm(%) ↑	20.12	21.80	22.96
	auc@04cm(%) ↑	31.68	33.40	34.74
	auc@06cm(%) ↑	39.56	41.30	42.63
	auc@08cm(%) ↑	45.48	47.24	48.53
	auc@10cm(%) ↑	50.16	51.92	53.19

Cauchy loss performed better than other

Effect of different Loss Scales

Camera Metrics		Cauchy loss scales						
(Support = 1	116)	0.05	0.1	0.2	0.5	1	2	3
Extrinsics	auc@01(%) ↑	84.54	84.42	83.65	81.40	78.60	76.44	75.36
	auc@03(%) ↑	88.98	88.42	88.39	87.34	85.44	84.01	83.29
	auc@05(%) ↑	90.76	90.23	90.28	89.54	88.10	86.93	86.45
	auc@10(%) ↑	92.92	92.43	92.47	92.01	90.95	90.24	89.99
	auc@20(%) ↑	94.80	94.35	94.33	94.06	93.40	92.98	92.89
	auc@30(%) ↑	95.87	95.39	95.35	95.13	94.67	94.39	94.32
Intrinsics	fovx error(deg) ↓	0.66	0.66	0.69	0.85	0.99	1.07	1.10
	fovy error(deg) ↓	0.81	0.81	0.93	1.12	1.22	1.40	1.46

Performance increases monotonously as scale decreases

Effect of different Loss Scales

Camera Metrics		Cauchy loss scales						
(Suppo	ort = 116)	0.05 0.1 0.2 0.5 1 2 3					3	
Error	rmse_median(cm) ↓	5.49	5.65	5.59	5.82	6.31	7.05	9.11
AUC	auc@02cm(%) ↑	24.93	24.93	25.07	24.24	22.96	22.04	21.38
	auc@04cm(%) ↑	37.13	37.13	37.03	36.06	34.74	33.70	32.93
	auc@06cm(%) ↑	45.17	45.16	45.00	43.98	42.63	41.61	40.79
	auc@08cm(%) ↑	51.08	51.06	50.92	49.87	48.53	47.53	46.72
	auc@10cm(%) ↑	55.68	55.64	55.53	54.48	53.19	52.18	51.40

Performance increases as scale decreases

The trend is similar for Soft L1 loss as well

Further Enhancements

- Completing and merging tracks could improve the final results.
- Pixel-Perfect SfM in order to refine the keypoint for better tracks.

Conclusion

- Incorporating VGGT + BA helps in global alignment
- VGGSfM tracks has better reconstruction than MASt3R tracks
- A small tradeoff can be done for significant drop in time compleity by having small decrease in accuracy
- Track length seems to be important factor than the tracking accuracy.
- Re applying BA has slight improvement in performance
- Cauchy Loss has better performance than L2 and Soft L1 loss
- As scale decreases the results are better

THANK YOU!!