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Abstract

In machine learning, data abundance is crucial, espe-
cially with the rise of deep learning, which requires large
datasets to learn meaningful patterns due to its complex-
ity. In the context of self-driving cars, collecting real-world
data is challenging, so researchers often rely on simulated
data, which can lead to distribution shift issues. Our ap-
proach aims to address this by generating realistic images
from simulated data using a generator-discriminator model
trained with adversarial loss for image translation.

1. Introduction
The success of deep learning since 2012, especially in

image recognition, highlighted the need for large labeled
datasets like ImageNet. The emergence of transformer-
based architectures in NLP has amplified this demand, as
both deep learning and transformer models perform better
with large datasets.

In autonomous driving, ensuring reliability in diverse en-
vironments is crucial due to varying weather conditions and
dynamic elements like pedestrians and vehicles. However,
collecting diverse real-world data is challenging due to the
high cost of precise equipment, accurate labeling needs,
and unpredictable weather. To address these issues, re-
searchers have increasingly turned to simulated data using
tools like CARLA, LGSVL, AirSim, and Apollo Simu-
lation, which simplify dataset generation for self-driving
cars. These tools provide the easy method for generation of
datasets for self-driving cars.

Despite this, models trained solely on simulated data of-
ten lack robustness in real-world scenarios, as there is min-
imal transfer of robustness from synthetic to natural distri-
bution shifts, as noted in ”Measuring Robustness to Nat-
ural Distribution Shifts in Image Classification” [8]. This
project aims to balance the ease of dataset generation with
model robustness. We evaluated a YOLO model trained on
both real and simulated images for car detection and found
that while it performed well on its own dataset, its perfor-
mance dropped when tested on real images, as shown in

Trained on Evaluated on mAP50

Real images Real images 0.976
Simulated images Simulated images 0.99
Simulated images Real images 0.752

Table 1. Effect of Distribution shift. Yolo model was trained and
evaluated on both real image and simulated images

Table 1. The goal is to generate more realistic images from
simulated ones to address data scarcity.

2. Related Works

The Pix2Pix model [4] leverages conditional adversarial
networks for image translation, featuring a UNet-based gen-
erator and a PatchGAN discriminator trained with adversar-
ial and L1 losses. This approach maps between domains
using paired images, where adversarial loss is essential to
avoid blurry outputs typical of autoencoders relying solely
on reconstruction loss.

For unpaired image translation, CycleGAN [9] employs
two networks with separate discriminators: one generates
predictions and the other reconstructs the input image, en-
suring cycle consistency. Additionally, StyleGAN [5] of-
fers style transfer by preserving high-level attributes while
applying a given style. Although this project focused on
paired images, these advanced techniques offer promising
scopes for future enhancement.

3. Methodology

3.1. Dataset

For this project, we have leveraged the KITTI Vision
Benchmark Suite dataset introduced in [3] and the Virtual
KITTI dataset introduced in [2]. Virtual KITTI is a photo-
realistic synthetic video dataset designed for learning and
evaluating computer vision models for various video under-
standing tasks. The dataset contains a total of 2,126 image
pairs, which we split into 1,488 pairs for the training set and
638 pairs for the validation set.



Figure 1. Image Translation Pipeline

3.2. General Image Translation Pipeline

Inspired by [4], the high-level architecture of our image
translation pipeline is shown in Figure 1. The overall archi-
tecture consists of a Discriminator and a Generator, where
the Generator is comprised of an Encoder and a Decoder.
The Generator’s task is to produce a realistic image from
a simulated input image, while the Discriminator’s role is
to classify whether an image is real or generated. We use
adversarial loss, as described in Equation 1

LcGAN = Ex,y[log(D(x, y)]+Ex,z[log(1−D(x,G(x, z)]
(1)

where D represents the Discriminator and G represents the
Generator. The Generator aims to produce images that
closely match the ground truth rather than merely fooling
the Discriminator. To achieve this, we incorporate an L1
loss, as suggested by the authors of [4]. The L1 loss is de-
scribed in Equation 2, and our final loss function is given in
Equation 3.

LL1 = Ex,y,z[||y −G(x, z)||1] (2)

Lfinal = LcGAN + LL1 (3)

3.2.1 Patch Discriminator

In traditional GANs, the Discriminator typically classifies
the entire image as either real or fake. However, Patch-
GAN [4] employs a different approach, where the Discrim-
inator evaluates and classifies each patch of the image inde-
pendently, as illustrated in Figure 2. This patch-wise clas-
sification strategy offers several advantages, particularly in
enhancing the quality of generated images. By focusing on
smaller patches, the Discriminator becomes more sensitive
to local features such as texture and fine details. This in-
creased attention to detail encourages the Generator to pro-
duce images with more realistic and higher-quality textures.
Additionally, PatchGAN reduces computational complex-
ity, as the Discriminator only needs to assess individual
patches rather than the entire image, optimizing the process
without sacrificing accuracy.

Figure 2. Patch Discriminator
Source

Figure 3. Unet Generator

3.3. U-Net based Architecture

In tasks requiring pixel-level precision, UNet architec-
tures [7] are a preferred choice due to their ability to ef-
fectively capture both spatial and contextual information.
Since our objective is to transform a synthetic image into
a realistic one, the UNet-based generator is well-suited for
this task. The input to the UNet is the synthetic image, and
the output is a high-fidelity, realistic image.

The UNet architecture, as shown in Figure 3, consists
of two main components: the encoder and the decoder.
The encoder extracts essential features from the input im-
age through a series of convolutional layers, each followed
by down-sampling. This process compresses the spatial in-
formation into a dense, context-rich representation, captur-
ing the underlying structure necessary for generating real-
istic details. The decoder then reconstructs the image from
this dense representation by performing up-convolutions to
gradually restore the spatial dimensions. This process is fa-
cilitated by skip connections, which link corresponding lay-
ers in the encoder and decoder. These skip connections en-
sure that fine details from the original image are preserved,
leading to a more accurate and realistic output.

https://jimchopper.medium.com/what-is-patchgan-e7e17a1c479a


Figure 4. ViT based Generator

3.4. ViT based Architecture

As we previously employed the U-Net architecture for
both the encoder and decoder in our generator, it initially
delivered promising results. However, over time, the model
began to overfit, particularly when processing complex syn-
thetic images, which led us to explore alternative architec-
tures. This prompted the integration of a Visual Trans-
former (ViT) [1] as the encoder within the generator, while
retaining the conventional decoder, and maintaining the
overall GAN architecture as seen in the figure 4.

The ViT is employed as the encoder by breaking down
the input image into smaller non-overlapping patches, treat-
ing each patch as a token similar to words in NLP tasks. The
ViT then applies a self-attention mechanism across these to-
kens, capturing long-range dependencies and global context
within the image. These enriched feature representations
from encoder are passed to a traditional decoder, which re-
constructs the image in the generator. The overall architec-
ture remains consistent with standard GANs: the genera-
tor, now equipped with the ViT encoder, produces an image
from the synthetic input, while the discriminator evaluates
its realism.

3.5. Swin-Transformer based Architecture

In Section 3.3, we used traditional CNN layers, while
Section 3.4 introduced the attention mechanism through
ViT. Although ViT outperforms the traditional UNet model
by leveraging attention, it operates on fixed-size patches
with uniform resolution and channels throughout. UNet,
on the other hand, captures multi-scale information through
its hierarchical structure, which adjusts resolution and in-
creases channels as the network deepens—an advantage for
detecting objects at various scales. The Swin Transformer
[6] merges UNet’s hierarchical, local-context processing
with ViT’s global context understanding. This hybrid ar-
chitecture is well-suited for diverse vision tasks, including
dense predictions like image generation. We replaced the
entire generator model with the Swin Transformer-based

Figure 5. Swin Generator
Source

architecture, as illustrated in Figure 5, which combines
UNet’s hierarchical design with ViT’s transformer blocks.

The Swin Transformer achieves its hierarchical structure
through patch merging and expansion. On the encoder side,
the patch size for each token is progressively increased from
4×4 to 32×32 via patch merging, and then reduced on the
decoder side using patch expansion. We also incorporate
skip connections between the Swin Transformer blocks in
the encoder and decoder, as illustrated in Figure 5, similar to
the UNet architecture. Swin Transformer reduces computa-
tional complexity by employing a shifted window approach.
Instead of allowing each token to attend to every other to-
ken, attention is restricted to tokens within a window of size
M . In subsequent transformer blocks, the window is shifted
to enable communication across different regions.

4. Experiments
In our series of experiments, we evaluated different

architectures for image-to-image translation, focusing on
their performance across several metrics. The evaluation
metrics include RMSE, which measures pixel-level errors.
Perceptual loss gauges the visual similarity to real images.
The Inception score assesses image quality and diversity,
while FID quantifies the distance between the distributions
of real and generated images.

Data Augmentation : For the augmentation, horizon-
tal flipping and Gaussian noise was applied to the synthetic
images, but only if the flip was not performed. Here, U-Net
model outperformed its augmented counterpart. See table
2.

ViT : The ViT-Complex model, with 6 attention heads
and 6 encoder blocks, delivered the somewhat improve-
ments. The ViT-Color model, utilizing color-specific aug-
mentations, only improved perceptual quality. Among dif-

https://medium.com/@ashishbisht0307/swin-transformer-based-unet-architecture-for-semantic-segmentation-with-pytorch-code-91e779334e8e


Model RMSE ↓ Perceptual ↓ Inception ↑ FID ↓
Unet 0.180 0.048 3.5 259.86
Unet Aug 0.196 0.050 2.73 307.30

Table 2. Performance metrics for Unet

ferent patch sizes, ViT-8 achieved the highest quality. For
this see table 3 and 4.

Model RMSE Perceptual Inception FID

ViT-Complex 0.151 0.0388 3.01 210.33
ViT-Color 0.169 0.0320 2.66 267.12
ViT-Aug 0.165 0.0365 3.10 280.90

Table 3. Performance metrics for ViT-based GAN models with a
patch size of 16

Model RMSE Perceptual Inception FID

ViT-8 0.144 0.0316 3.19 191.85
ViT-16 0.154 0.0515 2.80 252.30
ViT-32 0.162 0.0412 2.99 283.78

Table 4. Performance metrics for ViT-based GAN models with
different patch sizes.

Swin Transformer : With table 5, Swin-(12,6) model
excelled with the best RMSE, Inception score, and com-
petitive FID. The Swin-(6,6) model showed slightly higher
RMSE and FID but had strong perceptual quality.

Model RMSE Perceptual Inception FID

Swin-(6,6) 0.224 0.0600 1.79 435.18
Swin-(12,6) 0.204 0.0419 3.24 429.64
Color-(12, 6) 0.236 0.0484 2.10 416.57

Table 5. Performance metrics for Swin Transformer-based models
with different window sizes.

5. Results and Analysis
Following figure 6 compares image generation results

across different models. It shows input synthetic images,
ground truth, and generated outputs from U-Net, ViT-8, and
Swin. ViT-8, the top-performing model, produces the most
accurate and realistic images, highlighting its effectiveness
over the U-Net and Swin models.

The augmentation did not significantly improve perfor-
mance, possibly due to the limited effectiveness of these
transformations in enhancing model generalization. The

Swin Transformer models, under performed compared to
ViT-based models, likely because the Swin architecture
struggled with capturing complex image details. This
under-performance might be further exacerbated by the lim-
ited dataset, which may have hindered the Swin models’
ability to learn robust features.

Figure 6. Input synthetic images and their corresponding Ground
Truth and Generated images. Row 1: Input Image, Row 2:
Ground Truth Row 3: UNet, Row 4: ViT and Row 5: Swin

6. Future Enhancement
Due to time constraints, the experiments were limited,

but there is significant potential for future work. Hyperpa-
rameter tuning of Swin Transformers could yield improved
results. Additionally, incorporating the Virtual Kitti dataset
[2], which includes simulated images under various weather
conditions, and exploring techniques like CycleGAN [9] or
StyleGAN [5] to generate realistic weather-specific images
could further enhance the project.

7. Conclusion
In conclusion using adversarial loss and generator dis-

criminator architecture we are able to formulate image
translation pipeline to get realistic image from simulated
images. In presence of more amount of data the above men-
tioned methods are expected to perform better. Comparing
we see ViT based generator has comparatively high perfor-
mance.
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